Traffic Study

Southern Hills Development

prepared for:
Southern Hills Real Estate, LLC

Southwest Drive (Highway 49) and
 Kellers Chapel Road

Jonesboro, Arkansas

Project No.: P-2032
April 27, 2020

TABLE OF CONTENTS

Executive Summary 1
Introduction 5
The Site 7
Existing Traffic Conditions 11
Trip Generation \& Site Traffic Projections 14
Traffic Volume Assignments 17
Capacity and Level of Service 21
Traffic Signal Warrants Analysis 26
Auxiliary Right-Turn Lane Analysis 31
Findings and Recommendations 34
APPENDIX
Site PlanTrip Generation DataVehicle Turning Movement Count DataCapacity and Level of Service CalculationsTraffic Signal Warrants Results

EXECUTIVE SUMMARY

Peters \& Associates Engineers, Inc., has conducted a traffic engineering study relating to a proposed mixed-use development (Southern Hills) to be constructed on the east side of Southwest Drive (Highway 49) and on the north side of Kellers Chapel Road in Jonesboro, Arkansas. The intersection of Southwest Drive and Kellers Chapel Road is signalized. There is an additional signalized intersection on Kellers Chapel Road approximately 70 feet east of Southwest Drive at Mt. Carmel Road which is controlled with the same controller as the intersection of Southwest Drive and Kellers Chapel Road. Access to the site is proposed to be provided by three new Collector Streets intersecting Southwest Drive (Collector B, Collector E and Collector G) and five access drives to serve commercial tracts along Southwest Drive (Drive A, Drive C, Drive D, Drive F and Drive H). Additionally, there are points of access planned along Kellers Chapel Road. The primary focus of this report is to assess traffic operational characteristics of the nearby intersections of Southwest Drive and Kellers Chapel Road, Kellers Chapel Road and Mt. Carmel Road and the proposed Collector Streets and access drives intersections along Southwest Drive.

Directional splits and proposed street assignments for sitegenerated traffic volumes at the study intersections were made based on existing traffic patterns, transportation network and regional use and the Southern Hills site plan layout.

Projected traffic volumes were calculated for full build-out of the proposed Southern Hills development. The site is expected to be completed within ten years. These projected site-generated trips were added to the existing traffic volumes plus background traffic volume growth (with a rate of 2.5 percent per year for the first ten years, and a 1 percent per year rate for the following ten years), which resulted in projected traffic volumes at full build-out of the site as proposed.

As a part of this study, capacity and level of service traffic operational analysis has been conducted for the study intersections for AM and PM peak hours for existing traffic conditions (updated to 2020) and for projected traffic conditions.

Findings of this study are summarized as follows:

- Approximately 18,862 vehicle trips (combined in and out) per average weekday are projected to be generated by full build-out of the proposed Southern Hills mixed-use land uses on this site. Of this total for full build-out conditions, approximately 787 vehicle trips are estimated during the traffic conditions of the AM peak hour and approximately 1,378 vehicle trips are estimated during the traffic conditions of the PM peak hour.
- There is approximately 3,300 linear feet of site frontage along Southwest Drive. With three new collector streets and five new access drives, the spacing between the proposed access points would average over 400 feet between intersections. This spacing conforms to the recently adopted City of Jonesboro Access Management Policy for access spacing on a major arterial roadway.
- Capacity and level of service analysis was performed for existing traffic volumes, lane geometry and traffic control for the AM and PM peak hours for the existing study intersections. All vehicle movements currently operate at what calculates as an acceptable LOS "C" or better for existing traffic conditions at the study intersections for the AM and PM peak hours.
- Capacity and LOS analysis was performed for projected traffic conditions for full build-out of the Southern Hills development plus 20-year background traffic volume growth for the AM and PM peak hours for the study intersections. There are several vehicle movements at the study intersections that are expected to operate at what calculates as worse then LOS "D" during the AM and PM peak hours without any mitigation. However, capacity and LOS analysis was performed for projected traffic conditions for full build-out of the Southern Hills development plus 20year background traffic volume growth for the AM and PM peak hours for the study intersections with the following mitigation assumed:
o Widen Kellers Chapel Road eastbound and westbound approaches to Southwest Drive to three lanes with each consisting of a left-turn lane, a left/thru/right turn lane and one receiving lane.
o Traffic signal control at Southwest Drive and Collector E intersection and with Collector E consisting of dual left-turn lanes, a right-turn lane and a receiving lane.
- There are several vehicle movements at the study intersections that are expected to operate at improved LOS during the projected AM and PM peak hours with proposed mitigation. Additionally, as shown in the detailed LOS results in the Appendix, there is expected to be reduced vehicle delay. Furthermore the minor vehicle delay is expected to occur on the side streets with vehicles on Southwest Drive experiencing minimal delay in the study area. Additionally, with three new Collector Streets intersecting Southwest Drive and five access drives to serve commercial tracts along Southwest Drive, this is expected to accommodate left-turns at multiple, well spread locations entering the site. If fewer intersections were to be provided, the southbound left-turns on Southwest Drive could experience longer delay and vehicle queuing during the AM and PM peak hours.
- Projected intersection capacity utilization values and average control delay are expected to be acceptable for all of the study intersections for projected 20-year traffic conditions with the site-generated traffic included with the proposed mitigative improvements assumed.
- Based on peak hour volume criteria set out in the MUTCD, it was found that traffic signal warrants are projected to be met at the intersection of Southwest Drive and Collector E for projected 20-year traffic conditions.
- It was found that criteria is not expected to be met for a northbound right-turn deceleration lane on Southwest Drive at the proposed site intersections during the weekday AM and PM peak hour projected traffic conditions except for the approach to Collector E during the PM peak hour. However, capacity and LOS results for projected traffic conditions indicate that a right-turn deceleration lane is not needed.

Recommendations of this study are summarized as follows:

- At full build-out of the site, it is recommended to widen Kellers Chapel Road eastbound and westbound approaches to Southwest Drive from two lanes to three lanes with each accommodating a left-turn lane, a left/thru/right turn lane and one receiving lane. This recommendation will also necessitate modifications to the traffic signal which controls Southwest Drive and Kellers Chapel Road and Kellers Chapel Road and Mt. Carmel Road. The traffic signal modifications at Southwest Drive and Kellers Chapel Road could also include the addition of provisions for pedestrians at this intersection.
- At full build-out of the site, it is recommended that a fullyactuated traffic signal be installed at the intersection of Southwest Drive and Collector E. Additionally, Collector E should be constructed to consist of dual left-turn lanes, a right-turn lane and a receiving lane.
- It is recommended that Drives D and F at Southwest Drive each be constructed to allow left and right-turns in and only right-turns out (prohibit left-turns out).
- Intersection improvements for Southwest Drive and Kellers Chapel Road and new intersections along Southwest Drive must conform to design standards of ARDOT and the City of Jonesboro and will require approval by ARDOT and the City.
- Traffic signal design for the intersection of Southwest Drive and Collector E and traffic signal modifications for the intersection of Southwest Drive and Kellers Chapel Road must conform to design standards of ARDOT and the City of Jonesboro and will require approval by ARDOT and the City.

INTRODUCTION

Peters \& Associates Engineers, Inc., has conducted a traffic engineering study relating to a proposed mixed-use development (Southern Hills) to be constructed on the east side of Southwest Drive (Highway 49) and on the north side of Kellers Chapel Road in Jonesboro, Arkansas. The intersection of Southwest Drive and Kellers Chapel Road is signalized. There is an additional signalized intersection on Kellers Chapel Road approximately 70 feet east of Southwest Drive at Mt. Carmel Road which is controlled with the same controller as the intersection of Southwest Drive and Kellers Chapel Road. Access to the site is proposed to be provided by three new Collector Streets intersecting Southwest Drive (Collector B, Collector E and Collector G) and five access drives to serve commercial tracts along Southwest Drive (Drive A, Drive C, Drive D, Drive F and Drive H). Additionally, there are points of access planned along Kellers Chapel Road. The primary focus of this report is to assess traffic operational characteristics of the nearby intersections of Southwest Drive and Kellers Chapel Road, Kellers Chapel Road and Mt. Carmel Road and the proposed Collector Streets and access drives intersections along Southwest Drive. A reduced copy of the site plan is included in the Appendix for reference.

There are proposed to be a variety of land uses on the Southern Hills site, including residential apartments, town homes, condominiums, office, mini-warehouse, assisted living, retail uses and common areas (parks). Directional splits and proposed street assignments for site-generated traffic volumes at the study intersections were made based on existing traffic patterns, transportation network and regional use and the Southern Hills site plan layout of development.

This is a report of methodology and findings relating to a traffic engineering study undertaken to:

- Evaluate existing traffic conditions in the vicinity of the site.

Tverifo surdir

- Determine projected traffic volumes entering and exiting the proposed development at the nearby study intersections and the new street and access drive intersections along the site frontage proposed to serve the site.
- Identify the effects on traffic operations for existing traffic in combination with site-generated traffic associated with full build-out of the planned Southern Hills development with twenty years background traffic volume growth in the vicinity.
- Evaluate existing and projected traffic operations for the study intersections and make recommendations for improvements which may be necessary and appropriate for acceptable traffic operations for the projected traffic conditions.

In the following sections of this traffic study report are traffic data, study methods, findings and recommendations. The study is technical in nature. Analysis techniques employed are those most commonly used in the traffic engineering profession for traffic impact analysis. Certain data and calculations relative to traffic operational analysis are referenced in the report. Complete calculations and data are included in the Appendix of the report.

Tverific surdis

THE SITE

 The location of the development is in the City of Jonesboro, in Craighead County, Arkansas. The development is proposed to be constructed on the east side of Southwest Drive (Highway 49) and on the north side of Kellers Chapel Road. The intersection of Southwest Drive and Kellers Chapel Road is signalized. The site is currently undeveloped. There are proposed to be a variety of land uses on the Southern Hills site, including residential apartments, town homes, condominiums, office, mini-warehouse, assisted living, retail uses and common areas (parks). The proposed development site location and vicinity are shown on Figures 1 and 2, which follow.

Figure 1 - Vicinity Map

Tार्धांब STud5

Access to the site is proposed to be provided by three new Collector Streets intersecting Southwest Drive (Collector B, Collector E and Collector G) and five access drives to serve commercial tracts along Southwest Drive (Drive A, Drive C, Drive D, Drive F and Drive H). Additionally, there are points of access planned along Kellers Chapel Road. Collector E may be extended in the future to the east by others to connect to Culberhouse Road.

There is approximately 3,300 linear feet of site frontage along Southwest Drive. With three new collector streets and five new access drives, the spacing between the proposed access points would average over 400 feet between intersections. This spacing conforms to the recently adopted City of Jonesboro Access Management Policy for access spacing on a major arterial roadway as shown on this page.

Tverifo surdir

Southwest Drive, Highway 49, is a five-lane roadway with a speed limit of 50 miles per hour in the vicinity of the site. Southwest Drive is classified as a Principal Arterial on the City of Jonesboro Master Street Plan (MSP). The following photos show the general layout of the intersections of Southwest Drive and Kellers Chapel Road and Kellers Chapel Road and Mt. Carmel Road in the vicinity of the site. Photos were taken at locations as indicated on the captions.

Southwest Drive and Kellers Chapel Road and Mt. Carmel Road

पterfic surdiv

EXISTING TRAFFIC CONDITIONS

Traffic count data collected as a part of this study include AM and PM peak hours vehicle turning movement counts at the following intersections:

- Southwest Drive and Kellers Chapel Road.
- Kellers Chapel Road and Mt. Carmel Road.

Since schools are out and some local businesses are currently closed due to Covid-19 virus, existing traffic counts would not be representative of actual daily and peak hour conditions. Therefore, the method to update existing traffic volumes for the study intersections was discussed and agreed upon with the City of Jonesboro.

Traffic counts from 2017 were conducted while schools were is session. This count data was adjusted to account for 2.5 percent annual background growth for three years to provide updated count data.

The adjusted AM and PM peak hours vehicle turning movement counts are shown on Figure 3A, "Existing Traffic Volumes - AM Peak Hour," and Figure 3B, "Existing Traffic Volumes - PM Peak Hour." The 2017 peak hours vehicle turning movement count data (without adjustments to account for three years background growth) for these intersections are presented in more detail in the Appendix of this report.

Figure 3A
Existing Traffic Volumes - AM Peak Hour (Adjusted for 2020)

Figure 3B
Existing Traffic Volumes - PM Peak Hour (Adjusted for 2020)

TRIP GENERATION and SITE TRAFFIC
 PROJECTIONS

The Trip Generation, an Informational Report, published by the Institute of Transportation Engineers (ITE) and The Trip Generation Manual 10th Edition, 2017, were utilized in calculating the magnitude of traffic volumes expected to be generated by the proposed land uses of the site. These are reliable sources for this information and are commonly used in the traffic engineering profession. This software is the most up-to-date software for estimating vehicle trip generation at this time.

Using the selected trip generation rates, calculations were made as a part of this study to provide a reliable estimate of traffic volumes that can be expected to be associated with full build-out development of Southern Hills as proposed. These calculations entail applying the appropriate trip-generation rates to the land uses planned or assumed for the development. Results of these calculations are summarized on Table 1, "Summary of TripGeneration."

These calculations indicate that approximately 18,862 vehicle trips (combined in and out) per average weekday are projected to be generated by full build-out of the proposed Southern Hills mixed-use land uses on this site. Of this total for full build-out conditions, approximately 787 vehicle trips are estimated during the traffic conditions of the AM peak hour and approximately 1,378 vehicle trips are estimated during the traffic conditions of the PM peak hour.

These data have been adjusted for internal trip capture (i.e. multi-purpose trips within the site as opposed to new trips for each site land use).

∞
∞

AM PEAK HOUR

\circ

384

－17
403

$\stackrel{n}{N}$
$\stackrel{0}{2}$
$\stackrel{0}{N}$ $\stackrel{\infty}{\sim}$
 $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ N\end{array}$ $\stackrel{-1}{n}$ $\stackrel{n}{n}$ $\begin{array}{llll}\infty \\ \stackrel{\infty}{\sim} & \infty & \infty & \infty \\ \underset{\sim}{1} & -1\end{array}$ ｜｜c｜ ヨはん MOIVD dIV

stun st 81，000 Sq．fl． รəコンで＂0I 각
 Townhomes Condominiums

ш

These data have also been adjusted for "pass-by" trips (i.e. that portion of the site-destined traffic that could come from the existing adjacent street traffic stream). Calculations for pass-by trips was made consistent with values from Institute of Transportation Engineers (ITE) Trip Generation Manual 9th Edition, 2012, and Trip Generation Software 2013 by Trafficware, LLC and details of these volumes are included in the Appendix of this report.

Retail commercial, residential and office traffic, as will be associated with site, ordinarily contributes to the adjacent street traffic conditions during the on-street AM and PM peak traffic hours. Accordingly, the AM and PM peak traffic periods of the adjacent roads are the traffic operating conditions which have warranted primary traffic analysis as a part of this study.

In early comments from City staff there was a question about the density of the multi-family portion of the development. For the multi-family areas proposed, if only 12 units per acre (instead of 16) is constructed for these tracts it would generate approximate only 1,000 fewer trips per day. This would only be a 5 percent reduction in traffic volumes at full build of the site.

Turerfo Sachis

TRAFFIC VOLUME ASSIGNMENTS

Once projected traffic was estimated for the site, directional distributions were made to reflect the percent of anticipated vehicle turning movements at the study intersections. Vehicle trip distribution was developed based on current traffic counts and expected travel patterns to and from the proposed development. Directional distribution percentages used in this study are shown on Figure 4, "Directional Distribution - Site Traffic."

Tverifo surdiv

The directional distribution percentages for site traffic have been equated to percentage turns for each movement at the study intersections. The site-generated traffic volumes result from applying the directional distribution percentages to the corresponding projected sitegenerated traffic volumes summarized on Table 1, "Summary of Trip-Generation."

These projected site-generated trips for the development were added to the existing traffic volumes plus background traffic volume growth (with a rate of 2.5 percent per year for the first 10 years and an additional 1 percent per year for the following 10 years), have been combined and the results are depicted on the following figures:

- Figure 5A, "Projected Future 20-Year Traffic Volumes - AM Peak Hour."
- Figure 5B, "Projected Future 20-Year Traffic Volumes - PM Peak Hour."

Traffic volumes shown on Figures 3A, 3B, 5A and 5B are the values used in capacity and level of service calculations conducted as a part of this study. The effect of existing background traffic (i.e. the adjacent street non-site traffic which exists) and projected traffic associated with the site development as well as background traffic volume growth has thus been accounted for in this analysis.

Tverfic surdy

D

Tverifo surdir

CAPACITY and
 LEVEL OF SERVICE

Generally, the "capacity" of a street is a measure of its ability to accommodate a certain magnitude of moving vehicles. It is a rate as opposed to a quantity, measured in terms of vehicles per hour. More specifically, street capacity refers to the maximum number of vehicles that a street element (e.g. an intersection) can be expected to accommodate in a given time period under the prevailing roadway and traffic conditions.

Traffic operational analysis for the study intersections were evaluated based on the methodologies outlined in the Highway Capacity Manual, 2010 Edition, published by the Transportation Research Board. The operating conditions at an intersection are graded by the "level of service" experienced by drivers. Level of service (LOS) describes the quality of traffic operating conditions and is rated from " A " to " F ". LOS " A " represents the most desirable condition with free-flow movement of traffic with minimal delays. LOS "F" generally indicates severely congested conditions with excessive delays to motorists. Intermediate grades of B, C, D, and E reflect incremental increases in the average delay per stopped vehicle. Delay is measured in seconds per vehicle. The table below shows the upper limit of delay associated with each level of service for signalized and un-signalized intersections.

Intersection Level of Service Delay Thresholds

Level of Service

(LOS)	Signalized	Un-Signalized
A	<10 Seconds	<10 Seconds
B	<20 Seconds	<15 Seconds
C	<35 Seconds	<25 Seconds
D	<55 Seconds	<35 Seconds
E	<80 Seconds	<50 Seconds
F	≥ 80 Seconds	≥ 50 Seconds

The LOS rating deemed acceptable varies by community, facility type and traffic control device. LOS "D" is the desirable goal for movements at un-signalized intersections that must yield to other movements; however, a LOS "E" or " F " is often accepted for low to moderate traffic volumes where the installation of a traffic signal is not warranted by the conditions at the intersection or the location is deemed undesirable for signalization for other reasons. Other reasons may include the close proximity of an existing traffic signal or the presence of a convenient alternative route. For signalized intersections, level of service and average delay relate to all vehicles using the intersection. LOS "D" is the typical desirable standard for signalized intersections. The study intersection was evaluated using the Synchro analysis software package based on Highway Capacity Manual methods. This computer program has been proven to be reliable when used to analyze capacity and levels of traffic service under various operating conditions. Detailed results for all capacity calculations are included in the Appendix. The adjacent street weekday AM and PM peak traffic periods were used for these calculations. Factors included in the analysis are as follows:

- Existing traffic volumes and patterns.
- Directional distribution of projected traffic volumes.
- Existing and proposed intersection geometry (including elements such as turn lanes, curb radii, etc.).
- Existing background traffic volumes and projected site-generated volumes for projected traffic conditions.
- 20-Year background traffic growth.
- Existing or proposed traffic control.

Tverifo surdir

CAPACITY ANALYSIS

Level of Service Analysis Results

Existing Traffic Conditions

Capacity and level of service analysis was performed for existing traffic volumes, lane geometry and traffic control for the AM and PM peak hours for the following study intersections:

- Southwest Drive and Kellers Chapel Road.
- Kellers Chapel Road and Mt. Carmel Road.

As indicated in Table 2, "Level of Service Summary - Existing Traffic Conditions," all vehicle movements currently operate at what calculates as an acceptable LOS "C" or better for existing traffic conditions at the study intersections for the AM and PM peak hours.

Traffic volumes used for this analysis are shown on Figure 3A, "Existing Traffic Volumes - AM Peak Hour," and Figure 3B, "Existing Traffic Volumes - PM Peak Hour."

EXISTING TRAFFIC CONDITIONS		흔 0 0 0 0 0 은							읃								
Southwest Drive and Kellers Chapel Road	AM	SIGNAL	C			A			A	B		A		B	B	15.6	70.2\%
	PM		B			A			A	B		B		B	B	14.3	60.0\%
Kellers Chapel Road and Mt. Carmel Road	AM	SIGNAL			A		A		C		C				B	18.4	18.5\%
	PM				A		A		C		C				B	12.4	18.6\%

Table 2 - Level of Service Summary - Existing Traffic Conditions

Projected 20-Year Traffic Conditions

Capacity and LOS analysis was performed for projected traffic conditions for full build-out of the Southern Hills development plus 20-year background traffic volume growth for the AM and PM peak hours for the following intersections:

- Southwest Drive and Kellers Chapel Road.
- Kellers Chapel Road and Mt. Carmel Road.
- Southwest Drive and Drive A.
- Southwest Drive and Collector B.
- Southwest Drive and Drive C.
- Southwest Drive and Drive D.
- Southwest Drive and Collector E.
- Southwest Drive and Drive F.
- Southwest Drive and Collector G.
- Southwest Drive and Drive H.

Traffic volumes used for these projected traffic conditions are shown on Figure 5A, "Projected Future 20-Year Traffic Volumes - AM Peak Hour," and Figure 5B, "Projected Future 20-Year Traffic Volumes - PM Peak Hour."

The operating conditions projected to exist at the study intersections without mitigation are summarized in Table 3, "Level of Service Summary - Projected 20-Year Traffic Condition Without Mitigation." As indicated in Table 3, there are several vehicle movements at the study intersections that are expected to operate at what calculates as worse then LOS "D" during the AM and PM peak hours without any mitigation.

However, capacity and LOS analysis was performed for projected traffic conditions for full build-out of the Southern Hills development plus 20-year background traffic volume growth for the AM and PM peak hours for the study intersections with the following mitigation assumed:

- Widen Kellers Chapel Road eastbound and westbound approaches to Southwest Drive to three lanes with each consisting of a left-turn lane, a left/thru/right turn lane and one receiving lane.
- Traffic signal control at Southwest Drive and Collector E intersection and with Collector E consisting of dual left-turn lanes, a right-turn lane and a receiving lane.

The operating conditions projected to exist at the study intersections with mitigation as proposed are summarized in Table 4, "Level of Service Summary - Projected 20Year Traffic Condition With Mitigation."

As indicated in Table 4, there are several vehicle movements at the study intersections that are expected to operate at improved LOS during the projected AM and PM peak hours with proposed mitigation. Additionally, as shown in the detailed LOS results in the Appendix, there is expected to be reduced vehicle delay. Furthermore the minor vehicle delay is expected to occur on the side streets with vehicles on Southwest Drive experiencing minimal delay in the study area. Additionally, with three new Collector Streets intersecting Southwest Drive and five access drives to serve commercial tracts along Southwest Drive, this is expected to accommodate left-turns at multiple, well spread locations entering the site. If fewer intersections were to be provided, the southbound leftturns on Southwest Drive could experience longer delay and vehicle queuing during the AM and PM peak hours.

Projected intersection capacity utilization values and average control delay are expected to be acceptable for all of the study intersections for projected 20-year traffic conditions with the site-generated traffic included with the proposed mitigative improvements assumed.

(\%) uо!̣əองıəұu\|	$\left\lvert\, \begin{aligned} & \circ \\ & \stackrel{\circ}{+} \\ & \stackrel{+}{+} \end{aligned}\right.$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \dot{O} \\ & i \end{aligned}$	$\left\|\begin{array}{c} 0 \\ \dot{0} \\ \dot{j} \end{array}\right\|$	$\frac{\circ}{\circ}$	$\left.\begin{array}{\|c} \stackrel{\circ}{2} \\ \stackrel{\rightharpoonup}{N} \end{array} \right\rvert\,$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \circ \\ & \stackrel{0}{2} \\ & \stackrel{N}{2} \end{aligned}\right.$	$\left\|\begin{array}{c} 0 \\ \stackrel{0}{2} \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \circ \\ \stackrel{\circ}{\mathrm{S}} \\ \stackrel{1}{2} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}\right.$	$\left.\begin{array}{\|c} \circ \\ \stackrel{\circ}{\mathrm{N}} \\ \mathrm{~N} \end{array} \right\rvert\,$	$\left\lvert\, \begin{aligned} & \circ \\ & \stackrel{\circ}{2} \\ & \stackrel{3}{\circ} \end{aligned}\right.$	$\left\|\begin{array}{l} \circ \\ \infty \\ \infty \\ \infty \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \circ \\ \stackrel{\circ}{2} \\ \bar{\sigma} \end{array}\right\|$	$\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \infty \\ & \infty \end{aligned}$	$\begin{gathered} \circ \\ \stackrel{\circ}{\mathrm{u}} \\ \mathrm{o} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \infty \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} \circ \\ 0 \\ \infty \\ \infty \\ \infty \end{array}\right\|$	¢	¢
әગग૫ә / / spuoəəs Кејед ןоиұuоう 'бли	$\left\lvert\, \begin{gathered} m \\ \underset{子}{2} \end{gathered}\right.$	$\begin{aligned} & \dot{\rightharpoonup} \\ & \dot{C} \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{\mathrm{j}} \end{array}\right\|$	$\left\|\begin{array}{l} \text { os } \\ \underset{M}{j} \end{array}\right\|$	$\left\|\begin{array}{l} m \\ 0 \end{array}\right\|$	$\stackrel{+}{i}$	$\left\|\begin{array}{l} 10 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \infty \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} n \\ 0 \\ \hline \end{gathered}\right.$	$\begin{aligned} & \mathrm{m} \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} n \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} + \\ \dot{*} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \dot{N} \end{array}\right\|$	$\stackrel{\rightharpoonup}{\Delta}$	$\left\|\begin{array}{l} 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \mathrm{J} \\ \mathrm{~N} \end{array}\right\|$	$\stackrel{\sim}{0}$	$\stackrel{+}{\circ}$	\bigcirc

Table 3 - Level of Service Summary - Projected 20-Year Traffic Condition Without Mitigation

PROJECTED TRAFFIC CONDITIONS SITE FULL BUILD-OUT PLUS 20-YEARS BACKGROUND GROWTH WTH MITIGATION		Traffic Control					$\begin{aligned} & \text { 을 } \\ & \text { 들 } \\ & \text { 른 } \\ & \text { 릋 } \\ & \text { ́ } \\ & \vdots \\ & 3 \end{aligned}$										
INTERSECTION	PEAK HR						EAK	HOUR	- LEV	L OF	SERV						
*Southwest Drive and Kellers Chapel Road	AM	SIGNAL		D	D	A		A	B	C	C	E		B	C	27.1	93.4\%
	PM			D	D	C		B	B	C	C	D		C	C	26.0	89.2\%
Kellers Chapel Road and Mt. Carmel Road	AM	SIGNAL			A	A			F		F				E	72.4	34.6\%
	PM				A		A		F		F				C	32.5	41.1\%
Southwest Drive and Drive A	AM	"STOP" SIGN				E		E			A	D	A		n/a	0.3	77.7\%
	PM					B		B			A	B	A		n/a	0.2	70.6\%
Southwest Drive and Collector B	AM	"STOP" SIGN				F		B			A	D	A		n/a	0.9	77.6\%
	PM					C		B			A	C	A		n/a	0.5	70.2\%
Southwest Drive and Drive C	AM	"STOP" SIGN				E		E			A	D	A		n/a	0.3	77.9\%
	PM					C		C			A	B	A		n/a	0.2	71.2\%
Southwest Drive and Drive D	AM	"STOP" SIGN				E		E			A	D	A		n/a	0.3	77.9\%
	PM					E		E			A	D	A		n/a	0.5	90.3\%
**Southwest Drive and Collector E	AM	SIGNAL				E		C			A	D	A		A	7.1	78.8\%
	PM					E		D		C	C	D	C		C	28.8	88.2\%
Southwest Drive and Drive F	AM	"STOP" SIGN				D		D			A	C	A		n/a	0.2	78.2\%
	PM					E		E			A	C	A		n/a	0.3	90.2\%
Southwest Drive and Collector G	AM	"STOP" SIGN				E		E			A	C	A		n/a	0.9	78.3\%
	PM					F		F			A	C	A		n/a	2.6	89.6\%
Southwest Drive and Drive H	AM	"STOP" SIGN				D		D			A	C	A		n/a	0.2	78.3\%
	PM					E		E			A	E	A		n/a	0.3	90.4\%
*Widen Kellers Chapel Road eastbound and westbound approaches to SouthwestDrive to three lanes with each consisting of a left-turn lane, a left/hru/rightturn lane and one receiving lane. **Trafic signal control at Southwest Drive and Collector E intersection and with Collector E consisting of dual left-turn lanes, a right-turn lane and a receiving lane.																	
Table 4 - Level of Service Summary - Projected 20-Year Traffic Condition With Mitigation																	

FETERS \& ASCOClATE
ENGINEERS, INC:

Tverifo surdy

TRAFFIC SIGNAL WARRANTS ANALYSIS

In evaluating the need for a traffic signal, certain established warrants are examined by investigating traffic conditions and physical characteristics of the location. The decision to install a traffic signal at a particular location is evaluated quantitatively relative to these warrants. Satisfaction of conditions for only one of the warrants, as specified, is required for signalization. These warrants, as specified in the Manual on Uniform Traffic Control Devices (MUTCD), are described in detail in the appendix of this report. They are summarized as follows:

```
- Warrant One: Eight-Hour Vehicular Volume
- Warrant Two: Four-Hour Vehicular Volume
- Warrant Three: Peak Hour
- Warrant Four: Pedestrian Volume
- Warrant Five: School Crossing
- Warrant Six: Coordinated Signal System
- Warrant Seven: Crash Experience
- Warrant Eight: Roadway Network
```


SIGNAL WARRANTS RESULTS

Traffic signal warrants analysis was made for 20-year projected traffic volumes for full build-out conditions for the intersection of Southwest Drive and Collector E.

As stated in MUTCD Section 4C.01, Studies Factors for Justifying Traffic Control Signals, the study should consider the effects of the right-turn vehicles from the minor-street approaches. Engineering judgment should be used to determine what, if any, portion of the right-turn traffic is subtracted from the minor-street traffic count when evaluating the count against the signal warrants. As a part of the traffic signal warrants analysis for this intersection included in this study, all of the westbound right-turns on Collector E approach to Southwest Drive have been factored out for analysis of projected traffic conditions.

Tukeric surdy

Based on peak hour volume criteria set out in the MUTCD, it was found that traffic signal warrants are projected to be met at the intersection of Southwest Drive and Collector E for projected 20-year traffic conditions. Peak hour traffic signal warrants analysis results are depicted on the following tables:

- Table 5, "Projected 20-Year Traffic Conditions Southwest Drive and Collector E - AM Peak Hour."
- Table 6, "Projected 20-Year Traffic Conditions Southwest Drive and Collector E - PM Peak Hour."

Figure 4C-4, Warrant 3, Peak Hour (70\% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.
Table 5 - Projected 20-Year Traffic Conditions - Southwest Drive and Collector E - AM Peak Hour

Figure 4C-4, Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET) in

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.
Table 6 - Projected 20-Year Traffic Conditions - Southwest Drive and Collector E - PM Peak Hour

> | AUXILIARY RIGHT-TURN | The volumes used and results for right-turn lane warrants on |
| :--- | :--- |
| LANE ANALYSIS | Southwest Drive at the proposed Collector Street locations |
| | (Collector B, Collector E and Collector G) for the worst-case |
| | weekday AM and PM peak hours have been conducted using |
| guidelines for right-turn lanes warrants consistent with crite- | |
| | ria described in AASHTO's A Policy on Geometric Design of |
| | Highways and Street, 2011, 6th Edition. The following are |
| guidelines for right turn lane recommendations at un- | |
| signalized intersections: | |

- Right-turn lanes shall be considered if traffic volumes at an intersection meet the thresholds as shown on the following page on Graph 1, "Right-Turn Lane Warrants," for non-stopping approaches at a non-signalized intersection.
- The following data is required for the Right-Turn Lane Warrants criteria:
o Speed limit (equal or less than 45 MPH or greater than 45 MPH).
o Percent of right-turns.
o Advancing volume (includes through + right + left turn traffic).
- Capacity analysis should also be used to evaluate the need for right-turn lanes at stop controlled approaches. It was found that the northbound right-turn vehicle movements on Southwest Drive at the Collector B, Collector E and Collector G are expected to operate at what calculates as an acceptable LOS "C" or better for projected traffic conditions for the AM and PM peak hours.

Southwest Drive is currently a five-lane undivided roadway with a posted 50 mile per hour speed limit. Guidelines for a northbound deceleration right-turn lane on Southwest Drive at Collector B, Collector E and Collector G has been analyzed for the AM and PM peak hours for projected conditions. The results are depicted on Graph 1 and are summarized as follows:

Tverifo surdiv

- Northbound Southwest Drive and Collector B AM Peak Hour
o Advancing Volume $=2,249$ vehicles.
o Right-Turns $=20$ vehicles (1% RT) .
o Right-Turn Warrant Not Met.
PM Peak Hour
o Advancing Volume $=1,661$ vehicles.
o Right-Turns $=34$ vehicles (2% RT) .
o Right-Turn Warrant Not Met.
- Northbound Southwest Drive and Collector E

AM Peak Hour
o Advancing Volume $=2,258$ vehicles.
o Right-Turns $=48$ vehicles (2% RT) .
o Right-Turn Warrant Not Met.
PM Peak Hour
o Advancing Volume $=2,195$ vehicles.
o Right-Turns $=80$ vehicles (4% RT) .
o Right-Turn Warrant Met.

- Northbound Southwest Drive and Collector G

AM Peak Hour
o Advancing Volume $=2,271$ vehicles.
o Right-Turns $=28$ vehicles (1% RT).
o Right-Turn Warrant Not Met.
PM Peak Hour
o Advancing Volume $=2,219$ vehicles.
o Right-Turns $=47$ vehicles (2% RT) .
o Right-Turn Warrant Not Met.

Graph 1 - Right-Turn Lane Warrants

FINDINGS and
 RECOMMENDATIONS

Findings of this study are summarized as follows:

- Approximately 18,862 vehicle trips (combined in and out) per average weekday are projected to be generated by full build-out of the proposed Southern Hills mixed-use land uses on this site. Of this total for full build-out conditions, approximately 787 vehicle trips are estimated during the traffic conditions of the AM peak hour and approximately 1,378 vehicle trips are estimated during the traffic conditions of the PM peak hour.
- There is approximately 3,300 linear feet of site frontage along Southwest Drive. With three new collector streets and five new access drives, the spacing between the proposed access points would average over 400 feet between intersections. This spacing conforms to the recently adopted City of Jonesboro Access Management Policy for access spacing on a major arterial roadway.
- Capacity and level of service analysis was performed for existing traffic volumes, lane geometry and traffic control for the AM and PM peak hours for the existing study intersections. All vehicle movements currently operate at what calculates as an acceptable LOS " C " or better for existing traffic conditions at the study intersections for the AM and PM peak hours.
- Capacity and LOS analysis was performed for projected traffic conditions for full build-out of the Southern Hills development plus 20-year background traffic volume growth for the AM and PM peak hours for the study intersections. There are several vehicle movements at the study intersections that are expected to operate at what calculates as worse then LOS "D" during the AM and PM peak hours without any mitigation. However, capacity and LOS analysis was performed for projected traffic conditions for full build-out of the Southern Hills development plus 20-year background traffic volume growth for the AM and PM peak hours for the study intersections with the following mitigation assumed:
o Widen Kellers Chapel Road eastbound and westbound
approaches to Southwest Drive to three lanes with each consisting of a left-turn lane, a left/thru/right turn lane and one receiving lane.
o Traffic signal control at Southwest Drive and Collector E intersection and with Collector E consisting of dual left-turn lanes, a right-turn lane and a receiving lane.
- There are several vehicle movements at the study intersections that are expected to operate at improved LOS during the projected AM and PM peak hours with proposed mitigation. Additionally, as shown in the detailed LOS results in the Appendix, there is expected to be reduced vehicle delay. Furthermore the minor vehicle delay is expected to occur on the side streets with vehicles on Southwest Drive experiencing minimal delay in the study area. Additionally, with three new Collector Streets intersecting Southwest Drive and five access drives to serve commercial tracts along Southwest Drive, this is expected to accommodate left-turns at multiple, well spread locations entering the site. If fewer intersections were to be provided, the southbound left-turns on Southwest Drive could experience longer delay and vehicle queuing during the AM and PM peak hours.
- Projected intersection capacity utilization values and average control delay are expected to be acceptable for all of the study intersections for projected 20-year traffic conditions with the site-generated traffic included with the proposed mitigative improvements assumed.
- Based on peak hour volume criteria set out in the MUTCD, it was found that traffic signal warrants are projected to be met at the intersection of Southwest Drive and Collector E for projected 20-year traffic conditions.
- It was found that criteria is not expected to be met for a northbound right-turn deceleration lane on Southwest Drive at the proposed site intersections during the weekday AM and PM peak hour projected traffic conditions except for the approach to Collector E during the PM peak hour. However, capacity and LOS results for projected traffic conditions indicate that a right-turn deceleration lane is not needed.

Recommendations of this study are summarized as follows:

- At full build-out of the site, it is recommended to widen Kellers Chapel Road eastbound and westbound approaches to Southwest Drive from two lanes to three lanes with each accommodating a leftturn lane, a left/thru/right turn lane and one receiving lane. This recommendation will also necessitate modifications to the traffic signal which controls Southwest Drive and Kellers Chapel Road and Kellers Chapel Road and Mt. Carmel Road. The traffic signal modifications at Southwest Drive and Kellers Chapel Road could also include the addition of provisions for pedestrians at this intersection.
- At full build-out of the site, it is recommended that a fully-actuated traffic signal be installed at the intersection of Southwest Drive and Collector E. Additionally, Collector E should be constructed to consist of dual left-turn lanes, a right-turn lane and a receiving lane.
- It is recommended that Drives D and F at Southwest Drive each be constructed to allow left and right-turns in and only right-turns out (prohibit left-turns out).
- Intersection improvements for Southwest Drive and Kellers Chapel Road and new intersections along Southwest Drive must conform to design standards of ARDOT and the City of Jonesboro and will require approval by ARDOT and the City.
- Traffic signal design for the intersection of Southwest Drive and Collector E and traffic signal modifications for the intersection of Southwest Drive and Kellers Chapel Road must conform to design standards of ARDOT and the City of Jonesboro and will require approval by ARDOT and the City.

D

PETERS \& ASSOCIATES
ENGINEERS, INC

PETERS \& ASSOCIATES
ENGINEERS, INC

ITE TRIP-GENERATION 10TH EDITION

Southern Hills

Gas Station with 16 Fueling Positions with C-Store Land-Use (ITE 945)
4/23/2020
P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
Gasoline/Service Station With Convenience Market
(945) Click for more details
Independent Variable:
Vehicle Fueling Positions
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
5
Avg. Num. of Vehicle Fueling Positions:
18
Average Rate:
205.36
Range of Rates:
129.50 - 316.45
Standard Deviation:
73.80
Fitted Curve Equation:
T = 268.46(X) - 1161.00
R $^{2}:$
0.61
Directional Distribution:
50% entering, 50% exiting
Calculated Trip Ends:
Average Rate: 3286 (Total), 1643 (Entry), 1643 (Exit)
Fitted Curve: 3134 (Total), 1567 (Entry), 1567 (Exit)

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
51\% entering, 49\% exiting
Calculated Trip Ends:
Average Rate: 200 (Total), 102 (Entry), 98 (Exit)
Fitted Curve: 207 (Total), 105 (Entry), 102 (Exit)

Weekday PM Peak Hour of Adjacent Street

[^0]ITE TRIP-GENERATION 10TH EDITION Southern Hills

Approximate 20,000 Sq. Ft. Commercial Retail Land-Use (ITE 820) 4/23/2020
P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
Shopping Center (820) Click for more details
Independent Variable:
1000 Sq. Ft. GLA
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
147
Avg. 1000 Sq. Ft. GLA:
453
Average Rate:
37.75
Range of Rates:
7.42-207.98
Standard Deviation:
16.41
Fitted Curve Equation:
$\operatorname{Ln}(\mathrm{T})=0.68 \operatorname{Ln}(\mathrm{X})+5.57$
R^{2}
0.76
Directional Distribution:
50\% entering, 50\% exiting
Calculated Trip Ends:
Average Rate: 755 (Total), 377 (Entry), 378 (Exit)
Fitted Curve: 2012 (Total), 1006 (Entry), 1006 (Exit)

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
62% entering, 38% exiting
Calculated Trip Ends:
Average Rate: 19 (Total), 12 (Entry), 7 (Exit)
Fitted Curve: 162 (Total), 100 (Entry), 62 (Exit)

Weekday PM Peak Hour of Adjacent Street

Directional Distribution:
48% entering, 52% exiting
Calculated Trip Ends:
Average Rate: 76 (Total), 36 (Entry), 40 (Exit)
Fitted Curve: 165 (Total), 79 (Entry), 86 (Exit)

ITE TRIP-GENERATION 10TH EDITION Southern Hills
 Approximate 11,600 Sq. Ft. Office Land-Use (ITE 710)
 4/23/2020
 P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
General Office Building (710) Click for more details
Independent Variable:
1000 Sq. Ft. GFA
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
66
Avg. 1000 Sq. Ft. GFA:
171
Average Rate:
9.74
Range of Rates:
2.71 - 27.56
Standard Deviation:
5.15
Fitted Curve Equation:
Ln(T) = 0.97 Ln(X) + 2.50
$R^{2}:$
0.83
Directional Distribution:
50% entering, 50% exiting
Calculated Trip Ends:
Average Rate: 113 (Total), 56 (Entry), 57 (Exit)
Fitted Curve: 131 (Total), 65 (Entry), 66 (Exit)

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
86% entering, 14% exiting
Calculated Trip Ends:
Average Rate: 13 (Total), 11 (Entry), 2 (Exit)
Fitted Curve: 37 (Total), 32 (Entry), 5 (Exit)

Weekday PM Peak Hour of Adjacent Street

Directional Distribution:

16% entering, 84% exiting
Calculated Trip Ends:
Average Rate: 13 (Total), 2 (Entry), 11 (Exit)
Fitted Curve: 15 (Total), 2 (Entry), 13 (Exit)

ITE TRIP-GENERATION 10TH EDITION Southern Hills

Approximate 50 Bed Assisted Living Land-Use (ITE 254)
4/23/2020
P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
Assisted Living (254) Click for more details
Independent Variable:
Beds
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
2
Avg. Num. of Beds:
135
Average Rate:
2.60
Range of Rates:
$1.86-4.14$
Standard Deviation:
$* * * *$
Fitted Curve Equation:
Not Given
$R^{2}:$
$* * * *$
Directional Distribution:
50% entering, 50% exiting
Calculated Trip Ends:
Average Rate: 130 (Total), 65 (Entry), 65 (Exit)

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
63% entering, 37% exiting
Calculated Trip Ends:
Average Rate: 10 (Total), 6 (Entry), 4 (Exit)

Weekday PM Peak Hour of Adjacent Street

Directional Distribution:
38% entering, 62% exiting
Calculated Trip Ends:
Average Rate: 13 (Total), 5 (Entry), 8 (Exit)

Directional Distribution:
38% entering, 62% exiting
Calculated Trip Ends:
Average Rate: 13 (Total), 5 (Entry), 8 (Exit)

ITE TRIP-GENERATION 10TH EDITION Southern Hills

Approximate 40,000 Sq. Ft. Commercial Retail Land-Use (ITE 820) 4/23/2020
P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
Shopping Center (820) Click for more details
Independent Variable:
1000 Sq. Ft. GLA
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
147
Avg. 1000 Sq. Ft. GLA:
453
Average Rate:
37.75
Range of Rates:
7.42-207.98
Standard Deviation:
16.41
Fitted Curve Equation:
$\operatorname{Ln}(\mathrm{T})=0.68 \operatorname{Ln}(\mathrm{X})+5.57$
R^{2}
0.76
Directional Distribution:
50\% entering, 50\% exiting
Calculated Trip Ends:
Average Rate: 1510 (Total), 755 (Entry), 755 (Exit)
Fitted Curve: 3224 (Total), 1612 (Entry), 1612 (Exit)

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
62% entering, 38% exiting
Calculated Trip Ends:
Average Rate: 38 (Total), 23 (Entry), 15 (Exit)
Fitted Curve: 172 (Total), 107 (Entry), 65 (Exit)

Weekday PM Peak Hour of Adjacent Street

```
Directional Distribution:
48% entering, 52% exiting
Calculated Trip Ends:
Average Rate: }152\mathrm{ (Total), }73\mathrm{ (Entry), }79\mathrm{ (Exit)
Fitted Curve: }276\mathrm{ (Total), }132\mathrm{ (Entry), }144\mathrm{ (Exit)
```


ITE TRIP-GENERATION 10TH EDITION

Southern Hills

Approximate 100,000 Sq. Ft. Commercial Retail Land-Use (ITE 820)

4/23/2020
P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
Shopping Center (820) Click for more details
Independent Variable:
1000 Sq. Ft. GLA
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
147
Avg. 1000 Sq. Ft. GLA:
453
Average Rate:
37.75
Range of Rates:
Calculated Trip Ends:
Average Rate: 3775 (Total), 1887 (Entry), 1888 (Exit)
Fitted Curve: 6012 (Total), 3006 (Entry), 3006 (Exit)
Standard Deviation:
16.41
Fitted Curve Equation:
Ln(T) = 0.68 Ln(X) + 5.57
Ren
0.76

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
62% entering, 38% exiting
Calculated Trip Ends:
Average Rate: 94 (Total), 58 (Entry), 36 (Exit)
Fitted Curve: 202 (Total), 125 (Entry), 77 (Exit)

Weekday PM Peak Hour of Adjacent Street

Directional Distribution:
48% entering, 52% exiting
Calculated Trip Ends:
Average Rate: 381 (Total), 183 (Entry), 198 (Exit)
Fitted Curve: 543 (Total), 260 (Entry), 283 (Exit)

ITE TRIP-GENERATION 10TH EDITION Southern Hills
 Approximate 106 Residential Multi-Family Land-Use (ITE 220)
 4/23/2020
 P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
Multifamily Housing (Low-Rise) (220) Click for more
details
Independent Variable:
Dwelling Units
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
29
Avg. Num. of Dwelling Units:
168
Average Rate:
7.32
Range of Rates:
4.45 - 10.97
Standard Deviation:
1.31
Fitted Curve: 761 (Total), 380 (Entry), 381 (Exit)
Fitted Curve Equation:
T = 7. $7.56(X)$ - 40.86
Directional Distribution:

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
23% entering, 77% exiting
Calculated Trip Ends:
Average Rate: 49 (Total), 11 (Entry), 38 (Exit)
Fitted Curve: 50 (Total), 11 (Entry), 39 (Exit)

Weekday PM Peak Hour of Adjacent Street

Directional Distribution:

63% entering, 37% exiting
Calculated Trip Ends:
Average Rate: 59 (Total), 37 (Entry), 22 (Exit)
Fitted Curve: 62 (Total), 39 (Entry), 23 (Exit)

ITE TRIP-GENERATION 10TH EDITION Southern Hills

Approximate 106 Residential Townhomes Land-Use (ITE 220) 4/23/2020
P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
Multifamily Housing (Low-Rise) (220) Click for more
details
Independent Variable:
Dwelling Units
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
29
Avg. Num. of Dwelling Units:
168
Average Rate:
7.32
Range of Rates:
$4.45-10.97$
Standard Deviation:
1.31
Fitted Curve Equation:
T 7.56 (X) - 40.86
R2:
0.96
Directional Distribution:
50% entering, 50% exiting
Calculated Trip Ends:
Average Rate: 776 (Total), 388 (Entry), 388 (Exit)
Fitted Curve: 761 (Total), 380 (Entry), 381 (Exit)

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
23% entering, 77% exiting
Calculated Trip Ends:
Average Rate: 49 (Total), 11 (Entry), 38 (Exit)
Fitted Curve: 50 (Total), 11 (Entry), 39 (Exit)

Weekday PM Peak Hour of Adjacent Street

Directional Distribution:
63% entering, 37% exiting
Calculated Trip Ends:
Average Rate: 59 (Total), 37 (Entry), 22 (Exit)
Fitted Curve: 62 (Total), 39 (Entry), 23 (Exit)

ITE TRIP-GENERATION 10TH EDITION
 Southern Hills
 Approximate 106 Residential Condos Land-Use (ITE 220)
 4/23/2020
 P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
Multifamily Housing (Low-Rise) (220) Click for more
details
Independent Variable:
Dwelling Units
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
29
Avg. Num. of Dwelling Units:
168
Average Rate:
7.32
Range of Rates:
$4.45-10.97$
Standard Deviation:
1.31
Fitted Curve Equation:
T = $7.56(X)$ - 40.86
R^{2} :
0.96
Directional Distribution:
50% entering, 50% exiting
Calculated Trip Ends:
Average Rate: 776 (Total), 388 (Entry), 388 (Exit)
Fitted Curve: 761 (Total), 380 (Entry), 381 (Exit)

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
23% entering, 77% exiting
Calculated Trip Ends:
Average Rate: 49 (Total), 11 (Entry), 38 (Exit)
Fitted Curve: 50 (Total), 11 (Entry), 39 (Exit)

Weekday PM Peak Hour of Adjacent Street

Directional Distribution:

63% entering, 37% exiting
Calculated Trip Ends:
Average Rate: 59 (Total), 37 (Entry), 22 (Exit)
Fitted Curve: 62 (Total), 39 (Entry), 23 (Exit)

ITE TRIP-GENERATION 10TH EDITION Southern Hills

Approximate 50,000 Sq. Ft. Mini-Storage Land-Use (ITE 151)
4/23/2020
P2032

Weekday Daily Volume

Land Use:
Mini-Warehouse (151) Click for more details
Independent Variable:
1000 Sq. Ft. GFA
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
15
Avg. 1000 Sq. Ft. GFA:
52
Average Rate:
1.51
Range of Rates:
0.38 - 3.25
Standard Deviation:
0.95
Fitted Curve Equation:
Not Given
Res
50% entering, 50% exiting
Av***
Directional Distribution:

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:

60% entering, 40% exiting
Calculated Trip Ends:
Average Rate: 5 (Total), 3 (Entry), 2 (Exit)

Weekday PM Peak Hour of Adjacent Street

Directional Distribution:
47% entering, 53% exiting
Calculated Trip Ends:
Average Rate: 9 (Total), 4 (Entry), 5 (Exit)

ITE TRIP-GENERATION 10TH EDITION

 Southern HillsApproximate 10.34 Acres Common Place (Park) Land-Use (ITE 411) 4/23/2020

P2032

Weekday Daily Volume

LATA STATISTICS
Land Use:
Public Park (411) Click for more details
Independent Variable:
Acres
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
5
Avg. Num. of Acres:
612
Average Rate:
0.78
Range of Rates:
Calculated Trip Ends:
Average Rate: 8 (Total), 4 (Entry), 4 (Exit)
Fitted Curve: 95 (Total), 47 (Entry), 48 (Exit)
Rtandard Deviation:
50% entering, 50% exiting
1.36
Fitted Curve Equation:
T = 0.64(X) + 88.46
Directional Distribution:

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
59% entering, 41% exiting
Calculated Trip Ends:
Average Rate: 0 (Total), 0 (Entry), 0 (Exit)

Weekday PM Peak Hour
 of Adjacent Street

Directional Distribution:
55% entering, 45% exiting
Calculated Trip Ends:
Average Rate: 1 (Total), 0 (Entry), 1 (Exit)
Fitted Curve: 23 (Total), 13 (Entry), 10 (Exit)

ITE TRIP-GENERATION 10TH EDITION Southern Hills
Approximate $\mathbf{3 0 , 0 0 0}$ Sq. Ft. Commercial Retail Land-Use (ITE 820)
4/23/2020
P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
Shopping Center (820) Click for more details
Independent Variable:
1000 Sq. Ft. GLA
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
147
Avg. 1000 Sq. Ft. GLA:
453
Average Rate:
37.75
Range of Rates:
7.42-207.98
Standard Deviation:
16.41
Fitted Curve Equation:
$\operatorname{Ln}(\mathrm{T})=0.68 \operatorname{Ln}(X)+5.57$
R^{2}
0.76
Directional Distribution:
50\% entering, 50\% exiting
Calculated Trip Ends:
Average Rate: 1133 (Total), 566 (Entry), 567 (Exit)
Fitted Curve: 2651 (Total), 1325 (Entry), 1326 (Exit)

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
62% entering, 38% exiting
Calculated Trip Ends:
Average Rate: 28 (Total), 17 (Entry), 11 (Exit)
Fitted Curve: 167 (Total), 103 (Entry), 64 (Exit)

Weekday PM Peak Hour of Adjacent Street

```
Directional Distribution:
48% entering, 52% exiting
Calculated Trip Ends:
Average Rate: }114\mathrm{ (Total), 55 (Entry), 59 (Exit)
Fitted Curve: 223 (Total), 107 (Entry), 116 (Exit)
```

ITE TRIP-GENERATION 10TH EDITION Southern Hills
Approximate 55,000 Sq. Ft. Commercial Retail Land-Use (ITE 820) 4/23/2020
P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
Shopping Center (820) Click for more details
Independent Variable:
1000 Sq. Ft. GLA
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
147
Avg. 1000 Sq. Ft. GLA:
453
Average Rate:
37.75
Range of Rates:
7.42 - 207.98
Standard Deviation:
16.41
Fitted Curve Equation:
Ln(T) = 0.68 Ln(X) + 5.57
R2.
Average Rate: 2076 (Total), 1038 (Entry), 1038 (Exit)
Fitted Curve: 4004 (Total), 2002 (Entry), 2002 (Exit)
50% entering, 50% exiting

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:

62% entering, 38% exiting
Calculated Trip Ends:
Average Rate: 52 (Total), 32 (Entry), 20 (Exit)
Fitted Curve: 179 (Total), 111 (Entry), 68 (Exit)

Weekday PM Peak Hour of Adjacent Street

[^1]
ITE TRIP-GENERATION 10TH EDITION
 Southern Hills
 Approximate 80 Residential Multi-Family Land-Use (ITE 220)
 4/23/2020
 P2032

Weekday Daily Volume

Land Use:
Multifamily Housing (Low-Rise) (220) Click for more
details
Independent Variable:
Dwelling Units
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
29
Avg. Num. of Dwelling Units:
168
Average Rate:
7.32
Range of Rates:
4.45 - 10.97
Standard Deviation:
1.31
Fitted Curve: 564 (Total), 282 (Entry), 282 (Exit)
Fitted Curve Equation:
T = $7.56(X)$ - 40.86
0.96
Directional Distribution:
Cantering, 50% exiting

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:

23% entering, 77% exiting
Calculated Trip Ends:
Average Rate: 37 (Total), 8 (Entry), 29 (Exit)
Fitted Curve: 39 (Total), 9 (Entry), 30 (Exit)

Weekday PM Peak Hour of Adjacent Street

[^2]
ITE TRIP-GENERATION 10TH EDITION Southern Hills

Approximate 48 Residential Townhomes Land-Use (ITE 220)
4/23/2020
P2032

Weekday Daily Volume

Land Use:
Multifamily Housing (Low-Rise) (220) Click for more
details
Independent Variable:
Dwelling Units
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
29
Avg. Num. of Dwelling Units:
168
Average Rate:
7.32
Range of Rates:
4.45 - 10.97
Calculated Trip Ends:
Average Rate: 351 (Total), 175 (Entry), 176 (Exit)
Fitted Curve: 322 (Total), 161 (Entry), 161 (Exit)
1.31
Fitted Curve Equation: Deviation:
T = $7.56(X)$ - 40.86

Weekday AM Peak Hour

 of Adjacent StreetDirectional Distribution:
23% entering, 77% exiting
Calculated Trip Ends:
Average Rate: 22 (Total), 5 (Entry), 17 (Exit)
Fitted Curve: 24 (Total), 5 (Entry), 19 (Exit)

Weekday PM Peak Hour of Adjacent Street

Directional Distribution:
63% entering, 37% exiting
Calculated Trip Ends:
Average Rate: 27 (Total), 17 (Entry), 10 (Exit)
Fitted Curve: 31 (Total), 19 (Entry), 12 (Exit)

ITE TRIP-GENERATION 10TH EDITION

Southern Hills

Approximate 48 Residential Condos Land-Use (ITE 220)

4/23/2020
P2032

Weekday Daily Volume

Land Use:
Multifamily Housing (Low-Rise) (220) Click for more
details
Independent Variable:
Dwelling Units
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
29
Avg. Num. of Dwelling Units:
168
Average Rate:
7.32
Range of Rates:
4.45 - 10.97
Calculated Trip Ends:
Average Rate: 351 (Total), 175 (Entry), 176 (Exit)
Fitted Curve: 322 (Total), 161 (Entry), 161 (Exit)
1.31
Fire
Fitted Curve Equation:
T = $7.56(X)$ - 40.86

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
23% entering, 77% exiting
Calculated Trip Ends:
Average Rate: 22 (Total), 5 (Entry), 17 (Exit)
Fitted Curve: 24 (Total), 5 (Entry), 19 (Exit)

Weekday PM Peak Hour of Adjacent Street

Directional Distribution:
63% entering, 37% exiting
Calculated Trip Ends:
Average Rate: 27 (Total), 17 (Entry), 10 (Exit)
Fitted Curve: 31 (Total), 19 (Entry), 12 (Exit)

ITE TRIP-GENERATION 10TH EDITION

 Southern HillsApproximate 42,000 Sq. Ft. Commercial Retail Land-Use (ITE 820) 4/23/2020
P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
Shopping Center (820) Click for more details
Independent Variable:
1000 Sq. Ft. GLA
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
147
Avg. 1000 Sq. Ft. GLA:
453
Average Rate:
37.75
Range of Rates:
7.42-207.98
Standard Deviation:
16.41
Fitted Curve Equation:
$\operatorname{Ln}(\mathrm{T})=0.68 \operatorname{Ln}(X)+5.57$
R^{2}
0.76
Directional Distribution:
50\% entering, 50\% exiting
Calculated Trip Ends:
Average Rate: 1586 (Total), 793 (Entry), 793 (Exit)
Fitted Curve: 3333 (Total), 1666 (Entry), 1667 (Exit)

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:

62% entering, 38% exiting
Calculated Trip Ends:
Average Rate: 39 (Total), 24 (Entry), 15 (Exit)
Fitted Curve: 173 (Total), 107 (Entry), 66 (Exit)

Weekday PM Peak Hour of Adjacent Street

Directional Distribution:
48% entering, 52% exiting
Calculated Trip Ends:
Average Rate: 160 (Total), 77 (Entry), 83 (Exit)
Fitted Curve: 286 (Total), 137 (Entry), 149 (Exit)

48% entering, 52% exiting
Calculated Trip Ends:
Average Rate: 160 (Total), 77 (Entry), 83 (Exit)
Fitted Curve: 286 (Total), 137 (Entry), 149 (Exit)

ITE TRIP-GENERATION 10TH EDITION Southern Hills
 Approximate 81,000 Sq. Ft. Office Land-Use (ITE 710)
 4/23/2020
 P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
General Office Building (710) Click for more details
Independent Variable:
1000 Sq. Ft. GFA
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
66
Avg. 1000 Sq. Ft. GFA:
171
Average Rate:
9.74
Range of Rates:
2.71-27.56
Standard Deviation:
5.15
Fitted Curve Equation:
$\operatorname{Ln}(\mathrm{T})=0.97 \operatorname{Ln}(\mathrm{X})+2.50$
R^{2}
0.83
Directional Distribution:
50\% entering, 50\% exiting
Calculated Trip Ends:
Average Rate: 789 (Total), 394 (Entry), 395 (Exit)
Fitted Curve: 865 (Total), 432 (Entry), 433 (Exit)

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:

86% entering, 14% exiting
Calculated Trip Ends:
Average Rate: 94 (Total), 81 (Entry), 13 (Exit)
Fitted Curve: 103 (Total), 88 (Entry), 15 (Exit)

Weekday PM Peak Hour of Adjacent Street

Directional Distribution:

16% entering, 84% exiting
Calculated Trip Ends:
Average Rate: 93 (Total), 15 (Entry), 78 (Exit)
Fitted Curve: 93 (Total), 15 (Entry), 78 (Exit)

ITE TRIP-GENERATION 10TH EDITION

 Southern Hills
Approximate 10.12 Acres Common Place (Park) Land-Use (ITE 411)

4/23/2020
P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
Public Park (411) Click for more details
Independent Variable:
Acres
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
5
Avg. Num. of Acres:
612
Average Rate:
0.78
Range of Rates:
0.55-34.00
Standard Deviation:
1.36
Fitted Curve Equation:
$T=0.64(X)+88.46$
R^{2}
0.82
Directional Distribution:
50\% entering, 50\% exiting
Calculated Trip Ends:
Average Rate: 8 (Total), 4 (Entry), 4 (Exit)
Fitted Curve: 95 (Total), 47 (Entry), 48 (Exit)

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
59% entering, 41% exiting
Calculated Trip Ends:
Average Rate: 0 (Total), 0 (Entry), 0 (Exit)

Weekday PM Peak Hour
 of Adjacent Street

Directional Distribution:

55% entering, 45% exiting
Calculated Trip Ends:
Average Rate: 1 (Total), 0 (Entry), 1 (Exit)
Fitted Curve: 23 (Total), 13 (Entry), 10 (Exit)

ITE TRIP-GENERATION 10TH EDITION Southern Hills
 Approximate 1.06 Acres Common Place (Park) Land-Use (ITE 411)
 4/23/2020
 P2032

Weekday Daily Volume

DATA STATISTICS
Land Use:
Public Park (411) Click for more details
Independent Variable:
Acres
Time Period:
Weekday
Setting/Location:
General Urban/Suburban
Trip Type:
Vehicle
Number of Studies:
5
Avg. Num. of Acres:
612
Average Rate:
0.78
Range of Rates:
$0.55-34.00$
Standard Deviation:
1.36
Fitted Curve Equation:
T = 0.64 (X) + 88.46
R $^{2}:$
0.82
Directional Distribution:
50% entering, 50% exiting
Calculated Trip Ends:
Average Rate: 1 (Total), 0 (Entry), 1 (Exit)
Fitted Curve: 89 (Total), 44 (Entry), 45 (Exit)

Weekday AM Peak Hour of Adjacent Street

Directional Distribution:
59% entering, 41% exiting
Calculated Trip Ends:
Average Rate: 0 (Total), 0 (Entry), 0 (Exit)

Weekday PM Peak Hour of Adjacent Street

Directional Distribution:
55% entering, 45% exiting
Calculated Trip Ends:
Average Rate: 0 (Total), 0 (Entry), 0 (Exit)
Fitted Curve: 23 (Total), 12 (Entry), 11 (Exit)

Trip Generation Summary - Southern Hills

Project: P2032 Southern Hills
Open Date: 4/23/2020
Alternative: Southern Hills
Analysis Date: 4/23/2020

Source: Institute of Transportation Engineers, Trip Generation Manual 9th Edition, 2012

	Land Use	Average Daily Trips			AM Peak Hour of Adjacent Street Traffic			PM Peak Hour of Adjacent Street Traffic		
		Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
	CENTERSHOPPING 6	897	896	1793	25	15	40	75	81	156
	42 Gross Leasable Area 1000 SF									
710	OFFICEGENERAL 2	447	446	893	111	15	126	21	100	121
	81 Gross Floor Area 1000 SF									
411	PARK 2	10	9	19	26	20	46	20	15	35
	10.12 Acres									
411	PARK 3	1	1	2	3	2	5	2	2	4
	1.06 Acres									
Unadjusted Volume		9738	9726	19464	496	449	945	900	925	1825
Internal Capture Trips		0	0	0	17	17	34	178	178	356
Pass-By Trips		0	0	0	0	0	0	151	153	304
Volume Added to Adjacent Streets		9738	9726	19464	479	432	911	571	594	1165

Total AM Peak Hour Internal Capture $=4$ Percent
Total PM Peak Hour Internal Capture $=20$ Percent

Peters \& Associates Engineers, Inc.
Peak Hour Turning Movement Count Data
AM Hour Turning Movement Count Data
File Name : AM-49-KC
Southwest Dr. and Kellers Chapel Rd.
Site Code : 00000000
Start Date : 08/17/2017
Page No : 1
Jonesboro, AR P1885

	Southwest Dr. (Hwy 49) From North					Kellers Chapel Rd. From East					Southwest Dr. (Hwy 49) From South					Kellers Chapel Rd. From West					
Start Time	Righ	Thru	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \text { Righ } \\ \mathrm{t} \end{array}$	Thru	Left	$\begin{array}{r} \mathrm{Ped} \\ \mathrm{~s} \end{array}$	App. Total	$\begin{array}{r} \text { Righ } \\ \mathrm{t} \end{array}$	Thru	Left	$\begin{array}{r} \mathrm{Ped} \\ \mathrm{~s} \end{array}$	App. Total	$\begin{array}{r} \text { Righ } \\ \mathrm{t} \end{array}$	Thru	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Int. Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
07:00 AM	8	187	7	0	202	20	2	3	0	25	0	149	0	0	149	6	1	41	0	48	424
07:15 AM	10	209	9	0	228	25	3	4	0	32	0	206	2	0	208	22	0	46	0	68	536
07:30 AM	6	168	8	0	182	27	8	7	0	42	5	240	12	0	257	14	2	65	0	81	562
07:45 AM	13	134	9	0	156	26	3	5	0	34	6	280	11	0	297	4	3	41	0	48	535
Total	37	698	33	0	768	98	16	19	0	133	11	875	25	0	911	46	6	193	0	245	2057
08:00 AM	10	106	11	0	127	19	3	2	0	24	4	236	8	0	248	1	1	29	0	31	430
08:15 AM	8	102	9	0	119	16	4	0	0	20	1	123	2	0	126	0	1	23	0	24	289
08:30 AM	7	103	5	0	115	16	2	1	0	19	1	116	2	0	119	4	0	15	0	19	272
08:45 AM	12	115	7	0	134	10	1	0	0	11	1	133	4	0	138	0	1	34	0	35	318
Total	37	426	32	0	495	61	10	3	0	74	7	608	16	0	631	5	3	101	0	109	1309
Grand Total	74	$\begin{array}{r} 112 \\ 4 \end{array}$	65	0	1263	159	26	22	0	207	18	148 3	41	0	1542	51	9	294	0	354	3366
Apprch \%	5.9	$\begin{array}{r} 89 . \\ 0 \end{array}$	5.1	0.0		$\begin{array}{r} 76 . \\ 8 \end{array}$	$\begin{array}{r} 12 . \\ 6 \end{array}$	$\begin{array}{r} 10 . \\ 6 \end{array}$	0.0		1.2	96.	2.7	0.0		$\begin{array}{r} 14 . \\ 4 \end{array}$	2.5	$\begin{array}{r} 83 . \\ 1 \end{array}$	0.0		
Total \%	2.2	33.	1.9	0.0	37.5	4.7	0.8	0.7	0.0	6.1	0.5	44. 1	1.2	0.0	45.8	1.5	0.3	8.7	0.0	10.5	

Peters \& Associates Engineers, Inc.
Peak Hour Turning Movement Count Data
AM Hour Turning Movement Count Data Southwest Dr. and Kellers Chapel Rd.

File Name : AM-49-KC
Jonesboro, AR
Site Code : 00000000
Start Date : 08/17/2017
P1885

	Southwest Dr. (Hwy 49) From North					Kellers Chapel Rd. From East					Southwest Dr. (Hwy 49) From South					Kellers Chapel Rd. From West					
Start Time	Righ t	Thru	Left	$\begin{array}{r\|} \hline \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \text { Righ } \\ \mathrm{t} \end{array}$	Thru	Left	Ped s	App. Total	Righ t	Thru	Left	Ped s	App. Total	$\begin{array}{r} \text { Righ } \\ \mathrm{t} \end{array}$	Thru	Left	Ped s	App. Total	Int. Total

Peak Hour From 07:00 AM to 08:45 AM - Peak 1 of 1																				
Intersecti	07:15 AM																			
Volume	39	617	37	0	693	97	17	18	0	132	15	962	33	0	1010	416	181	0	228	2063
Percent	5.6	89.	5.3	0.0		$\begin{array}{r} 73 . \\ 5 \end{array}$	$\begin{array}{r} 12 . \\ 9 \end{array}$	$\begin{array}{r} 13 . \\ 6 \end{array}$	0.0		1.5	95.	3.3	0.0		$\begin{array}{rr}18 . & 2.6 \\ 0\end{array}$	79.	0.0		
07:30 Volume	6	168	8	0	182	27	8	7	0	42	5	240	12	0	257	142	65	0	81	562
Peak																				0.918
Factor																				
High Int.	07:15	AM				07:30	AM				07:45	AM				07:30 AM				
Volume	10	209	9	0	228	27	8	7	0	42	6	280	11	0		142	65	0	81	
Peak					0.76					0.78					0.85				0.70	
Factor					0					6					0				4	

Peters \& Associates Engineers, Inc.
Peak Hour Turning Movement Count Data
PM Hour Turning Movement Count Data
File Name : PM-49-KC
Southwest Dr. and Kellers Chapel Rd.
Site Code : 00000000
Start Date : 08/16/2017
Page No : 1
Jonesboro, AR P1885

Groups Printed- PM Count Data

	Southwest Dr. (Hwy 49) From North					Kellers Chapel Rd. From East					Southwest Dr. (Hwy 49) From South					Kellers Chapel Rd. From West					
Start Time		Thru	Left	Ped	App. Total	$\begin{array}{\|c} \text { Righ }_{t} \end{array}$	Thru	Left	$\begin{array}{r\|} \hline \text { Ped } \\ \hline \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \text { Righ } \\ \mathrm{t} \end{array}$	Thru	Left	$\begin{array}{r} \hline \text { Ped } \\ \mathrm{s} \\ \hline \end{array}$	App. Total	$\begin{array}{r} \text { Righ } \\ t \end{array}$	Thru	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{aligned} & \text { Int. } \\ & \text { Total } \end{aligned}$
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
03:00 PM	21	201	9	0	231	10	2	3	0	15	6	154	1	0	161	2	4	18	0	24	431
03:15 PM	30	144	12	0	186	18	2		0	21	6	203	15	0	224	0	1	9	0	10	441
03:30 PM	22	136	14	0	172	14	0	3	0	17	3	246	12	0	261	4	5	11	0	20	470
03:45 PM	16	145	11	0	172	10	2	1	0	13	3	173	4	0	180	0	2	25	0	27	392
Total	89	626	46	0	761	52	6	8	0	66	18	776	32	0	826	6	12	63	0	81	1734
04:00 PM	27	163	15	0	205	12	2	2	0	16	2	162	2	0	166	3	1	24	0	28	415
04:15 PM	26	170	20	0	216	5	4	1	0	10	4	166		0	176	1	3	5	0	9	411
04:30 PM	29	193	20	0	242	15	4	3	0	22	5	149	3	0	157	0	3	14	0	17	438
04:45 PM	35	221	19	0	275	15	2	1	0	18	3	140	3	0	146	2	4	21	0	27	466
Total	117	747	74	0	938	47	12	7	0	66	14	617	14	0	645	6	11	64	0	81	1730
05:00 PM	41	209	19	0	269	14	2	0	0	16	3	183	5	0	191	1	2	19	0	22	498
05:15 PM	57	211	26	0	294	17	2	1	0	20	4	173	2	0	179	1	6	14	0	21	514
05:30 PM	46	194	21	0	261	23	7	1	0	31	2	165		0	174	0	3	17	0	20	486
05:45 PM	22	196	17	0	235	12	3	1	0	16	1	160	1	0	162	0	7	49	0	56	469
Total	166	810	83	0	1059	66	14	3	0	83	10	681	15	0	706	2	18	99	0	119	1967
Grand Total	372	$\begin{array}{r} 218 \\ 3 \end{array}$	203	0	2758	165	32	18	0	215	42	207 4	61	0	2177	14	41	226	0	281	5431
Apprch \%	$\begin{array}{r} 13 . \\ 5 \end{array}$	$79 .$	7.4	0.0		$\begin{array}{r} 76 . \\ 7 \end{array}$	$14 .$ 9	8.4	0.0		1.9	$95 .$ 3	2.8	0.0		5.0	$\begin{array}{r} 14 . \\ 6 \end{array}$	$80 .$	0.0		
Total \%	6.8	$40 .$	3.7	0.0	50.8	3.0	0.6	0.3	0.0	4.0	0.8	$38 .$	1.1	0.0	40.1	0.3	0.8	4.2	0.0	5.2	

Peters \& Associates Engineers, Inc.

Peak Hour Turning Movement Count Data

PM Hour Turning Movement Count Data
File Name : PM-49-KC
Southwest Dr. and Kellers Chapel Rd.
Site Code : 00000000
Jonesboro, AR
Start Date : 08/16/2017
P1885

	Southwest Dr. (Hwy 49) From North					Kellers Chapel Rd. From East					Southwest Dr. (Hwy 49) From South					Kellers Chapel Rd. From West					
Start Time	Righ t	Thru	Left	$\begin{array}{r\|} \hline \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \text { Righ } \\ \mathrm{t} \end{array}$	Thru	Left	Ped s	App. Total	Righ t	Thru	Left	Ped s	App. Total	$\begin{array}{r} \text { Righ } \\ \mathrm{t} \end{array}$	Thru	Left	Ped s	App. Total	Int. Total

Peters \& Associates Engineers, Inc.

Peak Hour Turning Movement Count Data

AM Hour Turning Movement Count Data
Kellers Chapel Rd. and Mt. Carmel Rd.
Jonesboro, AR
P1885
File Name : AM-MtCar
Site Code : 00000000
Start Date : 08/17/2017
Page No : 1

Peters \& Associates Engineers, Inc.

Peak Hour Turning Movement Count Data

AM Hour Turning Movement Count Data
Kellers Chapel Rd. and Mt. Carmel Rd.
Jonesboro, AR P1885

File Name : AM-MtCar
Site Code : 00000000
Start Date : 08/17/2017
Page No : 2

	Kellers Chapel Rd. From East				Mt. Carmel Rd. From South				Kellers Chapel Rd. From West				
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds	App. Total	Int. Total
Peak Hour From 07:00 AM to 08:45 AM - Peak 1 of 1													
Intersection	07:15 AM												
Volume	6	0	0	6	1	118	0	119	51	4	0	55	180
Percent	100.0	0.0	0.0		0.8	99.2	0.0		92.7	7.3	0.0		
07:30 Volume	2	0	0	2	0	39	0	39	15	1	0	16	57
Peak Factor													0.789
High Int.	07:15 AM				07:30 AM				07:45 AM				
Volume	2	0	0	2	0	39	0	39	17	1	0	18	
Peak Factor				0.750				0.763				0.764	

Peters \& Associates Engineers, Inc.

Peak Hour Turning Movement Count Data

PM Hour Turning Movement Count Data
File Name : PM-MtCar
Kellers Chapel Rd. and Mt Carmel Rd.
Jonesboro, AR
P1885
Site Code : 00000000
Start Date : 08/16/2017
Page No : 1

Peters \& Associates Engineers, Inc.

Peak Hour Turning Movement Count Data

PM Hour Turning Movement Count Data
Kellers Chapel Rd. and Mt Carmel Rd.
Jonesboro, AR P1885

File Name : PM-MtCar
Site Code : 00000000
Start Date : 08/16/2017
Page No : 2

	Kellers Chapel Rd. From East				Mt. Carmel Rd. From South				Kellers Chapel Rd. From West				
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds	App. Total	Int. Total
Peak Hour From 03:00 PM to 05:45 PM - Peak 1 of 1													
Intersection	04:45 PM												
Volume	4	0	0	4	1	79	0	80	94	7	0	101	185
Percent	100.0	0.0	0.0		1.3	98.8	0.0		93.1	6.9	0.0		
05:30 Volume	1	0	0	1	0	29	0	29	24	1	0	25	55
Peak Factor													0.841
High Int.	04:45 PM				05:30 PM				05:15 PM				
Volume	2	0	0	2	0	29	0	29	28	2	0	30	
Peak Factor				0.500				0.690				0.842	

\square PETERS \& ASSOCIATES
Engineers, inc

	4	\rightarrow		7				\dagger	p	1	$\frac{1}{1}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\$		${ }_{1}$	中 ${ }^{\text {a }}$		${ }^{7}$	中 ψ°	
Volume (vph)	195	6	44	19	18	104	36	1036	16	40	664	42
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Storage Length (ft)	150		0	100		0	200		0	200		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	0	1611	0	0	1535	0	1630	3253	0	1630	3230	0
Flt Permitted		0.962			0.993		0.303			0.138		
Satd. Flow (perm)	0	1611	0	0	1535	0	520	3253	0	237	3230	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		30			30			50			50	
Link Distance (ft)		534			109			561			454	
Travel Time (s)		12.1			2.5			7.7			6.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	267	0	0	154	0	39	1143	0	43	768	0
Turn Type	Split	NA		Split	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	$4!$	$4!$		$8!$	$8!$		5	2		1	6	
Permitted Phases							2			6		
Detector Phase	4	4		8	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		8.0	20.0		8.0	20.0	
Total Split (s)	40.0	40.0		40.0	40.0		8.0	32.0		8.0	32.0	
Total Split (\%)	50.0\%	50.0\%		50.0\%	50.0\%		10.0\%	40.0\%		10.0\%	40.0\%	
Maximum Green (s)	36.0	36.0		36.0	36.0		4.0	28.0		4.0	28.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0			4.0		4.0	4.0		4.0	4.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	Min		None	Min	
Walk Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0			11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0			0	
Act Effct Green (s)		16.9			16.9		30.4	28.3		31.1	29.8	
Actuated g/C Ratio		0.29			0.29		0.53	0.49		0.54	0.52	
v/c Ratio		0.57			0.34		0.11	0.72		0.19	0.46	
Control Delay		22.7			5.7		8.2	18.0		9.4	12.3	
Queue Delay		0.0			0.1		0.0	0.0		0.1	0.0	
Total Delay		22.7			5.8		8.2	18.0		9.5	12.3	
LOS		C			A		A	B		A	B	
Approach Delay		22.7			5.8			17.7			12.1	
Approach LOS		C			A			B			B	
Queue Length 50th (ft)		85			8		6	195		7	82	
Queue Length 95th (ft)		148			15		21	\#347		22	182	

	4	\rightarrow	\geqslant	\dagger	\leftarrow	4	4	\uparrow	P	*	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Internal Link Dist (tt)		454			29			481			374	
Turn Bay Length (ft)							200			200		
Base Capacity (vph)		1048			998		354	1645		228	1714	
Starvation Cap Reductn		0			245		0	0		0	0	
Spillback Cap Reductn		38			0		0	0		16	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.26			0.20		0.11	0.69		0.20	0.45	

Intersection Summary

Area Type: Other
Cycle Length: 80
Actuated Cycle Length: 57.7
Natural Cycle: 80
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.72
Intersection Signal Delay: 15.6
Intersection LOS: B
Intersection Capacity Utilization 70.2\% ICU Level of Service C

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
! Phase conflict between lane groups.
Splits and Phases: $\quad 3$: Southwest Dr (Hwy 49) \& Kellers Chapel Rd

Lane Group $\quad ø 9 \quad \varnothing 10$
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	\rightarrow		7		4	p						
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	$\emptyset 1$	$\emptyset 2$	$\emptyset 4$	$\emptyset 5$	$ø 6$	$\emptyset 8$
Lane Configurations	F			\uparrow	*							
Volume (vph)	7	55	1	14	127	1						
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750						
Satd. Flow (prot)	1512	0	0	1711	1633	0						
Flt Permitted				0.995	0.953							
Satd. Flow (perm)	1512	0	0	1707	1633	0						
Right Turn on Red		No				No						
Satd. Flow (RTOR)												
Link Speed (mph)	30			30	30							
Link Distance (ft)	109			779	182							
Travel Time (s)	2.5			17.7	4.1							
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92						
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	68	0	0	16	139	0						
Turn Type	NA		custom	NA	NA							
Protected Phases	610			610	9		1	2	4	5	6	8
Permitted Phases			10									
Detector Phase	610		10	610	9							
Switch Phase												
Minimum Initial (s)			4.0		4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)			20.0		20.0		8.0	20.0	20.0	8.0	20.0	20.0
Total Split (s)			20.0		20.0		8.0	32.0	40.0	8.0	32.0	40.0
Total Split (\%)			25.0\%		25.0\%		10\%	40\%	50\%	10\%	40\%	50\%
Maximum Green (s)			16.0		16.0		4.0	28.0	36.0	4.0	28.0	36.0
Yellow Time (s)			3.5		3.5		3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)			0.5		0.5		0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)					0.0							
Total Lost Time (s)					4.0							
Lead/Lag			Lead		Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?			Yes		Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)			3.0		3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode			None		Min		None	Min	None	None	Min	None
Walk Time (s)			5.0		5.0			5.0	5.0		5.0	5.0
Flash Dont Walk (s)			11.0		11.0			11.0	11.0		11.0	11.0
Pedestrian Calls (\#/hr)			0		0			0	0		0	0
Act Effct Green (s)	39.8			39.8	11.8							
Actuated g/C Ratio	0.69			0.69	0.20							
v/c Ratio	0.07			0.01	0.42							
Control Delay	3.2			6.3	27.1							
Queue Delay	0.2			0.0	0.0							
Total Delay	3.4			6.3	27.1							
LOS	A			A	C							
Approach Delay	3.4			6.3	27.1							
Approach LOS	A			A	C							
Queue Length 50th (ft)	2			1	50							
Queue Length 95th (ft)	m14			10	99							
Internal Link Dist (ft)	29			699	102							
Turn Bay Length (ft)												
Base Capacity (vph)	1291			1457	472							

P2032 Southern Hills 4/15/2020 Existing AM Peak Hour
EJP
Page 5

Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	$\emptyset 1$	$\emptyset 2$	$\emptyset 4$	$\emptyset 5$	$ø 6$	$\emptyset 8$
Starvation Cap Reductn	838			0	0							
Spillback Cap Reductn	0			0	0							
Storage Cap Reductn	0			0	0							
Reduced v/c Ratio	0.15			0.01	0.29							

Intersection Summary

```
Area Type: Other
```

Cycle Length: 80
Actuated Cycle Length: 57.7
Natural Cycle: 80
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.72
Intersection Signal Delay: $18.4 \quad$ Intersection LOS: B
Intersection Capacity Utilization 18.5\% ICU Level of Service A
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 17: Mt Carmel Rd \& Kellers Chapel Rd

	4			7			4	\dagger	p	ϑ		4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		${ }_{1}$	性		${ }^{7}$	中 ${ }^{\text {c }}$	
Volume (vph)	107	19	2	3	15	71	16	733	11	89	872	179
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Storage Length (ft)	150		0	100		0	200		0	200		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	0	1644	0	0	1527	0	1630	3253	0	1630	3175	0
Flt Permitted		0.960			0.998		0.167			0.247		
Satd. Flow (perm)	0	1644	0	0	1527	0	287	3253	0	424	3175	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		30			30			50			50	
Link Distance (ft)		534			109			561			454	
Travel Time (s)		12.1			2.5			7.7			6.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	139	0	0	96	0	17	809	0	97	1143	0
Turn Type	Split	NA		Split	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	$4!$	$4!$		$8!$	$8!$		5	2		1	6	
Permitted Phases							2			6		
Detector Phase	4	4		8	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		8.0	20.0		8.0	20.0	
Total Split (s)	40.0	40.0		40.0	40.0		8.0	32.0		8.0	32.0	
Total Split (\%)	50.0\%	50.0\%		50.0\%	50.0\%		10.0\%	40.0\%		10.0\%	40.0\%	
Maximum Green (s)	36.0	36.0		36.0	36.0		4.0	28.0		4.0	28.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0			4.0		4.0	4.0		4.0	4.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	Min		None	Min	
Walk Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0			11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0			0	
Act Effct Green (s)		16.4			16.4		27.4	24.4		29.8	29.2	
Actuated g/C Ratio		0.30			0.30		0.50	0.44		0.54	0.53	
v/c Ratio		0.28			0.21		0.07	0.56		0.30	0.68	
Control Delay		16.4			3.5		7.7	15.3		9.9	14.7	
Queue Delay		0.0			0.1		0.0	0.0		0.1	0.0	
Total Delay		16.4			3.5		7.7	15.3		10.0	14.7	
LOS		B			A		A	B		B	B	
Approach Delay		16.4			3.5			15.1			14.3	
Approach LOS		B			A			B			B	
Queue Length 50th (ft)		32			3		2	112		15	134	
Queue Length 95th (ft)		79			6		11	181		38	\#333	

	\Rightarrow	\rightarrow		t	\leftarrow	4	4	\dagger	$>$)	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Internal Link Dist (tt)		454			29			481			374	
Turn Bay Length (ft)							200			200		
Base Capacity (vph)		1098			1020		242	1690		319	1679	
Starvation Cap Reductn		0			318		0	0		0	0	
Spillback Cap Reductn		53			0		0	0		22	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.13			0.14		0.07	0.48		0.33	0.68	

Intersection Summary

Area Type: Other
Cycle Length: 80
Actuated Cycle Length: 55.1
Natural Cycle: 80
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.68
Intersection Signal Delay: $14.3 \quad$ Intersection LOS: B
Intersection Capacity Utilization 60.0\% ICU Level of Service B
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
! Phase conflict between lane groups.
Splits and Phases: $\quad 3$: Southwest Dr (Hwy 49) \& Kellers Chapel Rd

Lane Group $\quad ø 9 \quad \varnothing 10$
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	\rightarrow		7		4	7						
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	$\emptyset 1$	$\emptyset 2$	$\emptyset 4$	$\emptyset 5$	$ø 6$	$\emptyset 8$
Lane Configurations	\uparrow			\uparrow	*							
Volume (vph)	18	101	1	4	85	1						
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750						
Satd. Flow (prot)	1520	0	0	1699	1633	0						
Flt Permitted				0.982	0.953							
Satd. Flow (perm)	1520	0	0	1685	1633	0						
Right Turn on Red		No				No						
Satd. Flow (RTOR)												
Link Speed (mph)	30			30	30							
Link Distance (ft)	109			779	182							
Travel Time (s)	2.5			17.7	4.1							
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92						
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	130	0	0	5	93	0						
Turn Type	NA		custom	NA	NA							
Protected Phases	610			610	9		1	2	4	5	6	8
Permitted Phases			10									
Detector Phase	610		10	610	9							
Switch Phase												
Minimum Initial (s)			4.0		4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)			20.0		20.0		8.0	20.0	20.0	8.0	20.0	20.0
Total Split (s)			20.0		20.0		8.0	32.0	40.0	8.0	32.0	40.0
Total Split (\%)			25.0\%		25.0\%		10\%	40\%	50\%	10\%	40\%	50\%
Maximum Green (s)			16.0		16.0		4.0	28.0	36.0	4.0	28.0	36.0
Yellow Time (s)			3.5		3.5		3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)			0.5		0.5		0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)					0.0							
Total Lost Time (s)					4.0							
Lead/Lag			Lead		Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?			Yes		Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)			3.0		3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode			None		Min		None	Min	None	None	Min	None
Walk Time (s)			5.0		5.0			5.0	5.0		5.0	5.0
Flash Dont Walk (s)			11.0		11.0			11.0	11.0		11.0	11.0
Pedestrian Calls (\#/hr)			0		0			0	0		0	0
Act Effct Green (s)	39.2			39.2	8.9							
Actuated g/C Ratio	0.71			0.71	0.16							
v/c Ratio	0.12			0.00	0.35							
Control Delay	2.6			4.8	26.3							
Queue Delay	0.2			0.0	0.0							
Total Delay	2.8			4.8	26.3							
LOS	A			A	C							
Approach Delay	2.8			4.8	26.3							
Approach LOS	A			A	C							
Queue Length 50th (ft)	2			1	27							
Queue Length 95th (ft)	54			5	72							
Internal Link Dist (ft)	29			699	102							
Turn Bay Length (ft)												
Base Capacity (vph)	1328			1472	484							

P2032 Southern Hills 4/15/2020 Existing PM Peak Hour
EJP
Page 5

Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	$\varnothing 1$	$ø 2$	$\emptyset 4$	$\emptyset 5$	$ø 6$	$\emptyset 8$
Starvation Cap Reductn	734			0	0							
Spillback Cap Reductn	0			0	0							
Storage Cap Reductn	0			0	0							
Reduced v/c Ratio	0.22			0.00	0.19							

Intersection Summary

```
Area Type: Other
```

Cycle Length: 80
Actuated Cycle Length: 55.1
Natural Cycle: 80
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.68
Intersection Signal Delay: $12.4 \quad$ Intersection LOS: B
Intersection Capacity Utilization 19.6\% ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 17: Mt Carmel Rd \& Kellers Chapel Rd

	7		\dagger			\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		中 ${ }_{\text {\% }}$		${ }^{7}$	种
Volume (vph)	8	12	2248	12	12	1337
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0	0		0	120	
Storage Lanes	1	0		0	1	
Taper Length (ft)	25				25	
Satd. Flow (prot)	1562	0	3257	0	1646	3260
Flt Permitted	0.980				0.950	
Satd. Flow (perm)	1562	0	3257	0	1646	3260
Link Speed (mph)	30		50			50
Link Distance (ft)	185		287			288
Travel Time (s)	4.2		3.9			3.9
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	1\%	1\%	2\%	1\%	1\%	2\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	22	0	2456	0	13	1453
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 77.9\%				ICU Level of Service D		
Analysis Period (min) 15						

	7					\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		中t		\%	个 \uparrow	
Volume (veh/h)	8	12	2248	12	12	1337	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	9	13	2443	13	13	1453	
Pedestrians							
Lane Width (ft)							
Walking Speed (tt/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			TWLTL			TWLTL	
Median storage veh)			2			2	
Upstream signal (ft)			921				
pX, platoon unblocked	0.43	0.43			0.43		
VC , conflicting volume	3203	1228			2457		
$\mathrm{vC1}$, stage 1 conf vol	2450						
vC2, stage 2 conf vol	753						
vCu, unblocked vol	3477	0			1721		
tC , single (s)	6.8	6.9			4.1		
$\mathrm{tC}, 2$ stage (s)	5.8						
tF (s)	3.5	3.3			2.2		
p0 queue free \%	84	97			92		
cM capacity (veh/h)	54	462			156		
Direction, Lane\#	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3	
Volume Total	22	1629	828	13	727	727	
Volume Left	9	0	0	13	0	0	
Volume Right	13	0	13	0	0	0	
cSH	116	1700	1700	156	1700	1700	
Volume to Capacity	0.19	0.96	0.49	0.08	0.43	0.43	
Queue Length 95th (ft)	16	0	0	7	0	0	
Control Delay (s)	43.2	0.0	0.0	30.1	0.0	0.0	
Lane LOS	E			D			
Approach Delay (s)	43.2	0.0		0.3			
Approach LOS	E						
Intersection Summary							
Average Delay			0.3				
Intersection Capacity Utilization			77.9\%	ICU Level of Service			D
Analysis Period (min)			15				

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		${ }^{1}$	中 ${ }^{\text {a }}$		${ }^{7}$	个t ${ }^{\text {a }}$	
Volume (vph)	333	18	69	49	36	183	56	1739	45	82	1153	92
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0		0	0		0	200		0	200		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	0	1614	0	0	1544	0	1630	3247	0	1630	3224	0
Flt Permitted		0.962			0.991		0.103			0.052		
Satd. Flow (perm)	0	1614	0	0	1544	0	177	3247	0	89	3224	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		7			78			3			10	
Link Speed (mph)		30			30			50			50	
Link Distance (ft)		534			109			561			316	
Travel Time (s)		12.1			2.5			7.7			4.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	457	0	0	291	0	61	1939	0	89	1353	0
Turn Type	Split	NA		Split	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	$4!$	$4!$		8!	$8!$		5	2		1	6	
Permitted Phases							2			6		
Detector Phase	4	4		8	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		8.0	20.0		8.0	20.0	
Total Split (s)	44.0	44.0		44.0	44.0		11.0	87.0		9.0	85.0	
Total Split (\%)	31.4\%	31.4\%		31.4\%	31.4\%		7.9\%	62.1\%		6.4\%	60.7\%	
Maximum Green (s)	40.0	40.0		40.0	40.0		7.0	83.0		5.0	81.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0			4.0		4.0	4.0		4.0	4.0	
Lead/Lag							Lead	Lead		Lag	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	Min		None	Min	
Walk Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0			11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0			0	
Act Effct Green (s)		40.0			40.0		83.0	83.0		83.2	83.2	
Actuated g/C Ratio		0.29			0.29		0.59	0.59		0.59	0.59	
v/c Ratio		0.98			0.59		0.35	1.01		0.83	0.70	
Control Delay		85.8			10.4		17.7	50.6		94.8	22.7	
Queue Delay		0.0			2.7		0.0	0.0		0.0	0.0	
Total Delay		85.8			13.1		17.7	50.6		94.8	22.7	
LOS		F			B		B	D		F	C	
Approach Delay		85.8			13.1			49.6			27.2	
Approach LOS		F			B			D			C	
Queue Length 50th (ft)		409			0		23	~ 913		36	447	
Queue Length 95th (ft)		\#639			41		43	\#1107		\#139	535	

P2032 Southern Hills 4/15/2020 Projected AM Peak Hour
EJP

Splits and Phases: $\quad 3$: Southwest Dr (Hwy 49) \& Kellers Chapel Rd

Lane Group $\quad ø 9 \quad ø 10$
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	7					
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*/		中 ${ }^{\text {F }}$		${ }^{7}$	种
Volume (vph)	8	12	2238	16	12	1319
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0	0		0	200	
Storage Lanes	1	0		0	1	
Taper Length (ft)	25				25	
Satd. Flow (prot)	1562	0	3257	0	1646	3260
Flt Permitted	0.980				0.950	
Satd. Flow (perm)	1562	0	3257	0	1646	3260
Link Speed (mph)	30		50			50
Link Distance (ft)	208		316			318
Travel Time (s)	4.7		4.3			4.3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	1\%	1\%	2\%	1\%	1\%	2\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	22	0	2450	0	13	1434
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type:	er					
Control Type: Unsignalized						
Intersection Capacity Utilization 77.7\%				ICU Level of Service D		
Analysis Period (min) 15						

		pa	W			4
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations			\%	个4	\%	
Volume (vph)	2247	12	12	1341	8	12
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)		0	120		0	0
Storage Lanes		0	1		1	0
Taper Length (ft)			25		25	
Satd. Flow (prot)	3257	0	1646	3260	1562	0
Flt Permitted			0.950		0.980	
Satd. Flow (perm)	3257	0	1646	3260	1562	0
Link Speed (mph)	50			50	30	
Link Distance (f)	288			204	182	
Travel Time (s)	3.9			2.8	4.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	1\%	1\%	2\%	1\%	1\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	2455	0	13	1458	22	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 77.9\% ICU Level of Service D						
Analysis Period (min) 15						

		pa	W			4
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations			\%	个4	7	「
Volume (vph)	2210	48	56	1296	58	61
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)		0	200		0	0
Storage Lanes		0	1		1	1
Taper Length (ft)			25		25	
Satd. Flow (prot)	3251	0	1646	3260	1646	1473
Flt Permitted			0.950		0.950	
Satd. Flow (perm)	3251	0	1646	3260	1646	1473
Link Speed (mph)	50			50	30	
Link Distance (f)	204			296	224	
Travel Time (s)	2.8			4.0	5.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	1\%	1\%	2\%	1\%	1\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	2454	0	61	1409	63	66
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 78.8\% ICU Level of Service D						
Analysis Period (min) 15						

		${ }^{+}$	4			4	
Movement	NBT	NBR	SBL	SBT	NWL	NWR	
Lane Configurations	中 ${ }^{\text {a }}$		${ }^{1}$	中4	*		
Volume (veh/h)	2260	12	12	1344	8	12	
Sign Control	Free			Free	Stop		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	2457	13	13	1461	9	13	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	TWLTL			WLTL			
Median storage veh)	2			2			
Upstream signal (ft)							
pX, platoon unblocked							
vC , conflicting volume			2470		3220	1235	
$\mathrm{vC1}$, stage 1 conf vol					2463		
vC 2 , stage 2 conf vol					757		
vCu, unblocked vol			2470		3220	1235	
tC, single (s)			4.1		6.8	6.9	
tC, 2 stage (s)					5.8		
tF (s)			2.2		3.5	3.3	
p0 queue free \%			93		82	92	
cM capacity (veh/h)			187		49	169	
Direction, Lane \#	NB 1	NB 2	SB 1	SB 2	SB 3	NW 1	
Volume Total	1638	832	13	730	730	22	
Volume Left	0	0	13	0	0	9	
Volume Right	0	13	0	0	0	13	
cSH	1700	1700	187	1700	1700	85	
	0.96	0.49	0.07	0.43	0.43	0.26	
Volume to Capacity	0	0	6	0	0	23	
Control Delay (s) 0.		0.0	25.6	0.0	0.0	61.1	
Lane LOS			D			F	
Approach Delay (s) 0.0			0.2			61.1	
Approach LOS F							
Intersection Summary							
Average Delay			0.4				
Intersection Capacity Utilization			78.2\%		CU Level	Service	D
Analysis Period (min)			15				

	\rightarrow				4	\%						
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	$\varnothing 1$	$\emptyset 2$	$\emptyset 4$	$\varnothing 5$	$ø 6$	$\emptyset 8$
Lane Configurations	\uparrow			\uparrow	K							
Volume (vph)	51	94	12	60	206	14						
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750						
Satd. Flow (prot)	1580	0	0	1719	1641	0						
Flt Permitted				0.955	0.955							
Satd. Flow (perm)	1580	0	0	1655	1641	0						
Right Turn on Red		Yes				Yes						
Satd. Flow (RTOR)	102				2							
Link Speed (mph)	30			30	30							
Link Distance (ft)	109			779	182							
Travel Time (s)	2.5			17.7	4.1							
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92						
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%						
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	157	0	0	78	239	0						
Turn Type	NA		Perm	NA	NA							
Protected Phases	610			610	9		1	2	4	5	6	8
Permitted Phases			610									
Detector Phase	610		610	610	9							
Switch Phase												
Minimum Initial (s)					4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)					20.0		8.0	20.0	20.0	8.0	20.0	20.0
Total Split (s)					24.0		9.0	87.0	44.0	11.0	85.0	44.0
Total Split (\%)					17.1\%		6\%	62\%	31\%	8\%	61\%	31\%
Maximum Green (s)					20.0		5.0	83.0	40.0	7.0	81.0	40.0
Yellow Time (s)					3.5		3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)					0.5		0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)					0.0							
Total Lost Time (s)					4.0							
Lead/Lag					Lag		Lag	Lead		Lead	Lag	
Lead-Lag Optimize?					Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)					3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode					Min		None	Min	None	None	Min	None
Walk Time (s)					5.0			5.0	5.0		5.0	5.0
Flash Dont Walk (s)					11.0			11.0	11.0		11.0	11.0
Pedestrian Calls (\#/hr)					0			0	0		0	0
Act Effct Green (s)	92.9			92.9	30.3							
Actuated g/C Ratio	0.66			0.66	0.22							
v/c Ratio	0.15			0.07	0.67							
Control Delay	0.2			9.1	60.3							
Queue Delay	1.4			0.0	0.0							
Total Delay	1.6			9.1	60.3							
LOS	A			A	E							
Approach Delay	1.6			9.1	60.3							
Approach LOS	A			A	E							
Queue Length 50th (ft)	0			25	200							
Queue Length 95th (ft)	m0			45	297							
Internal Link Dist (ft)	29			699	102							
Turn Bay Length (ft)												

Lane Group	$\emptyset 10$
Lane Configurations	
Volume (vph)	
Ideal Flow (vphpl)	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Peak Hour Factor	
Heavy Vehicles (\%)	
Shared Lane Traffic (\%)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	10
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	4.0
Minimum Split (s)	20.0
Total Split (s)	20.0
Total Split (\%)	14\%
Maximum Green (s)	16.0
Yellow Time (s)	3.5
All-Red Time (s)	0.5
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	Lead
Lead-Lag Optimize?	Yes
Vehicle Extension (s)	3.0
Recall Mode	None
Walk Time (s)	5.0
Flash Dont Walk (s)	11.0
Pedestrian Calls (\#/hr)	0
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	
Turn Bay Length (ft)	

m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 17: Mt Carmel Rd \& Kellers Chapel Rd

Lane Group $\quad \varnothing 10$
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	7	4	\dagger	P		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		\uparrow 中		\%	个4
Volume (vph)	8	12	2266	8	12	1355
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0	0		0	120	
Storage Lanes	1	0		0	1	
Taper Length (t)	25				25	
Satd. Flow (prot)	1578	0	3257	0	1662	3260
Flt Permitted	0.980				0.950	
Satd. Flow (perm)	1578	0	3257	0	1662	3260
Link Speed (mph)	30		50			50
Link Distance (ft)	142		288			335
Travel Time (s)	3.2		3.9			4.6
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	0\%	2\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	22	0	2472	0	13	1473
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 78.3\%				ICU Level of Service D		
Analysis Period (min) 15						

	7	4	\dagger			\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		中 ${ }^{\text {F }}$		${ }^{7}$	性
Volume (vph)	14	21	1658	20	20	2038
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0	0		0	120	
Storage Lanes	1	0		0	1	
Taper Length (ft)	25				25	
Satd. Flow (prot)	1560	0	3254	0	1646	3260
Flt Permitted	0.981				0.950	
Satd. Flow (perm)	1560	0	3254	0	1646	3260
Link Speed (mph)	30		50			50
Link Distance (ft)	185		287			288
Travel Time (s)	4.2		3.9			3.9
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	1\%	1\%	2\%	1\%	1\%	2\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	38	0	1824	0	22	2215
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 71.2\%				ICU Level of Service C		
Analysis Period (min) 15						

	7					\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		中t		\%	个4	
Volume (veh/h)	14	21	1658	20	20	2038	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	15	23	1802	22	22	2215	
Pedestrians							
Lane Width (ft)							
Walking Speed (tt/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			TWLTL			TWLTL	
Median storage veh)			2			2	
Upstream signal (tt)			921				
pX, platoon unblocked	0.67	0.67			0.67		
VC , conflicting volume	2964	912			1824		
$\mathrm{vC1}$, stage 1 conf vol	1813						
vC2, stage 2 conf vol	1151						
vCu, unblocked vol	2947	0			1248		
tC , single (s)	6.8	6.9			4.1		
$\mathrm{tC}, 2$ stage (s)	5.8						
tF (s)	3.5	3.3			2.2		
p0 queue free \%	88	97			94		
cM capacity (veh/h)	128	730			375		
Direction, Lane \#	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3	
Volume Total	38	1201	622	22	1108	1108	
Volume Left	15	0	0	22	0	0	
Volume Right	23	0	22	0	0	0	
cSH	253	1700	1700	375	1700	1700	
Volume to Capacity	0.15	0.71	0.37	0.06	0.65	0.65	
Queue Length 95th (ft)	13	0	0	5	0	0	
Control Delay (s)	21.7	0.0	0.0	15.2	0.0	0.0	
Lane LOS	C			C			
Approach Delay (s)	21.7	0.0		0.1			
Approach LOS C							
Intersection Summary							
Average Delay			0.3				
Intersection Capacity Utilization			71.2\%	ICU Level of Service			C
Analysis Period (min)			15				

	4	\rightarrow	\geqslant	7	4	4	4	9	\%	ψ		\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		${ }^{7}$	性		${ }^{1}$	性	
Volume (vph)	213	44	3	40	38	146	25	1314	50	174	1541	329
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0		0	0		0	200		0	200		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	0	1647	0	0	1551	0	1630	3244	0	1630	3175	0
Flt Permitted		0.961			0.991		0.044			0.092		
Satd. Flow (perm)	0	1647	0	0	1551	0	75	3244	0	158	3175	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					57			4			32	
Link Speed (mph)		30			30			50			50	
Link Distance (ft)		534			109			561			316	
Travel Time (s)		12.1			2.5			7.7			4.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	283	0	0	243	0	27	1482	0	189	2033	0
Turn Type	Split	NA		Split	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	$4!$	$4!$		8!	$8!$		5	2		1	6	
Permitted Phases							2			6		
Detector Phase	4	4		8	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		8.0	20.0		8.0	20.0	
Total Split (s)	44.0	44.0		44.0	44.0		8.0	93.0		23.0	108.0	
Total Split (\%)	27.5\%	27.5\%		27.5\%	27.5\%		5.0\%	58.1\%		14.4\%	67.5\%	
Maximum Green (s)	40.0	40.0		40.0	40.0		4.0	89.0		19.0	104.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0			4.0		4.0	4.0		4.0	4.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	Min		None	Min	
Walk Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0			11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0			0	
Act Effct Green (s)		32.8			32.8		92.3	88.3		106.6	102.1	
Actuated g/C Ratio		0.22			0.22		0.63	0.60		0.72	0.69	
v/c Ratio		0.77			0.62		0.30	0.76		0.74	0.92	
Control Delay		69.9			14.0		18.4	26.4		38.0	28.5	
Queue Delay		0.1			3.3		0.0	0.0		3.1	0.0	
Total Delay		70.0			17.2		18.4	26.4		41.1	28.5	
LOS		E			B		B	C		D	C	
Approach Delay		70.1			17.2			26.3			29.6	
Approach LOS		E			B			C			C	
Queue Length 50th (ft)		271			29		7	532		74	856	
Queue Length 95th (ft)		382			m47		19	751		176	\#1260	

	4	\rightarrow		\downarrow	\leftarrow		4	4	p	*	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Internal Link Dist (tt)		454			29			481			236	
Turn Bay Length (ft)							200			200		
Base Capacity (vph)		449			465		89	1988		305	2262	
Starvation Cap Reductn		0			137		0	0		0	0	
Spillback Cap Reductn		8			0		0	0		52	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.64			0.74		0.30	0.75		0.75	0.90	

Intersection Summary

Area Type: Other
Cycle Length: 160
Actuated Cycle Length: 147.5
Natural Cycle: 140
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.92
Intersection Signal Delay: $30.4 \quad$ Intersection LOS: C
Intersection Capacity Utilization 104.1\% ICU Level of Service G
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
! Phase conflict between lane groups.

Lane Group $\quad ø 9 \quad \varnothing 10$
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	7		\dagger	7		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\％		个的		${ }^{1}$	个4
Volume（vph）	14	21	1638	27	20	2018
Ideal Flow（vphpl）	1750	1750	1750	1750	1750	1750
Storage Length（ft）	0	0		0	200	
Storage Lanes	1	0		0	1	
Taper Length（ft）	25				25	
Satd．Flow（prot）	1560	0	3254	0	1646	3260
Flt Permitted	0.981				0.950	
Satd．Flow（perm）	1560	0	3254	0	1646	3260
Link Speed（mph）	30		50			50
Link Distance（ft）	208		316			318
Travel Time（s）	4.7		4.3			4.3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	1\％	1\％	2\％	1\％	1\％	2\％
Shared Lane Traffic（\％）						
Lane Group Flow（vph）	38	0	1809	0	22	2193
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type：Other						
Control Type：Unsignalized						
Intersection Capacity Utilization 70．6\％				ICU Level of Service C		
Analysis Period（min） 15						

		pa	\cdots			4
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	中t		${ }^{7}$	个个	M	
Volume（vph）	2165	20	20	2677	14	21
Ideal Flow（vphpl）	1750	1750	1750	1750	1750	1750
Storage Length（tt）		0	120		0	0
Storage Lanes		0	1		1	0
Taper Length（ft）			25		25	
Satd．Flow（prot）	3257	0	1646	3260	1560	0
Flt Permitted			0.950		0.981	
Satd．Flow（perm）	3257	0	1646	3260	1560	0
Link Speed（mph）	50			50	30	
Link Distance（ t ）	288			204	182	
Travel Time（s）	3.9			2.8	4.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	2\％	1\％	1\％	2\％	1\％	1\％
Shared Lane Traffic（\％）						
Lane Group Flow（vph）	2375	0	22	2910	38	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type：Other						
Control Type：Unsignalized						
Intersection Capacity Utilization 90．3\％ICU Level of Service E						
Analysis Period（min） 15						

		pa	W			4
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	瑯		\％	个4	7	「
Volume（vph）	2115	80	94	2605	106	113
Ideal Flow（vphpl）	1750	1750	1750	1750	1750	1750
Storage Length（ft）		0	200		0	0
Storage Lanes		0	1		1	1
Taper Length（ ft ）			25		25	
Satd．Flow（prot）	3245	0	1646	3260	1646	1473
Flt Permitted			0.950		0.950	
Satd．Flow（perm）	3245	0	1646	3260	1646	1473
Link Speed（mph）	50			50	30	
Link Distance（ f ）	204			296	224	
Travel Time（s）	2.8			4.0	5.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	2\％	1\％	1\％	2\％	1\％	1\％
Shared Lane Traffic（\％）						
Lane Group Flow（vph）	2386	0	102	2832	115	123
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type：Other						
Control Type：Unsignalized						
Intersection Capacity Utilization 91．2\％ICU Level of Service F						
Analysis Period（min） 15						

		pa	\cdots			4
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	$\uparrow{ }^{\text {¢ }}$		${ }^{7}$	个4	M	
Volume (vph)	2194	20	20	2671	14	21
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (tt)		0	120		0	0
Storage Lanes		0	1		1	0
Taper Length (ft)			25		25	
Satd. Flow (prot)	3257	0	1646	3260	1560	0
Flt Permitted			0.950		0.981	
Satd. Flow (perm)	3257	0	1646	3260	1560	0
Link Speed (mph)	50			50	30	
Link Distance (t)	296			283	170	
Travel Time (s)	4.0			3.9	3.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	1\%	1\%	2\%	1\%	1\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	2407	0	22	2903	38	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 90.2\%Analysis Period (min) 15				ICU Level of Service E		

	\rightarrow		7		4	7						
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	$\emptyset 1$	$\emptyset 2$	$\emptyset 4$	$\emptyset 5$	$ø 6$	$\emptyset 8$
Lane Configurations	\dagger			\uparrow	*							
Volume (vph)	95	172	21	77	146	22						
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750						
Satd. Flow (prot)	1582	0	0	1714	1630	0						
Flt Permitted				0.906	0.958							
Satd. Flow (perm)	1582	0	0	1570	1630	0						
Right Turn on Red		Yes				Yes						
Satd. Flow (RTOR)	163				4							
Link Speed (mph)	30			30	30							
Link Distance (ft)	109			779	182							
Travel Time (s)	2.5			17.7	4.1							
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92						
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%						
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	290	0	0	107	183	0						
Turn Type	NA		Perm	NA	NA							
Protected Phases	610			610	9		1	2	4	5	6	8
Permitted Phases			610									
Detector Phase	610		610	610	9							
Switch Phase												
Minimum Initial (s)					4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)					20.0		8.0	20.0	20.0	8.0	20.0	20.0
Total Split (s)					24.0		23.0	93.0	44.0	8.0	108.0	44.0
Total Split (\%)					15.0\%		14\%	58\%	28\%	5\%	68\%	28\%
Maximum Green (s)					20.0		19.0	89.0	40.0	4.0	104.0	40.0
Yellow Time (s)					3.5		3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)					0.5		0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)					0.0							
Total Lost Time (s)					4.0							
Lead/Lag					Lead		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?					Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)					3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode					Min		None	Min	None	None	Min	None
Walk Time (s)					5.0			5.0	5.0		5.0	5.0
Flash Dont Walk (s)					11.0			11.0	11.0		11.0	11.0
Pedestrian Calls (\#/hr)					0			0	0		0	0
Act Effct Green (s)	113.5			113.5	19.1							
Actuated g/C Ratio	0.77			0.77	0.13							
v/c Ratio	0.23			0.09	0.86							
Control Delay	2.2			3.3	95.1							
Queue Delay	2.3			0.0	0.0							
Total Delay	4.5			3.3	95.1							
LOS	A			A	F							
Approach Delay	4.5			3.3	95.1							
Approach LOS	A			A	F							
Queue Length 50th (ft)	14			18	177							
Queue Length 95th (ft)	12			29	\#337							
Internal Link Dist (ft)	29			699	102							
Turn Bay Length (ft)												

Lane Group	$\emptyset 10$
Lane Configurations	
Volume (vph)	
Ideal Flow (vphpl)	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Peak Hour Factor	
Heavy Vehicles (\%)	
Shared Lane Traffic (\%)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	10
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	4.0
Minimum Split (s)	20.0
Total Split (s)	20.0
Total Split (\%)	13\%
Maximum Green (s)	16.0
Yellow Time (s)	3.5
All-Red Time (s)	0.5
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	Lag
Lead-Lag Optimize?	Yes
Vehicle Extension (s)	3.0
Recall Mode	None
Walk Time (s)	5.0
Flash Dont Walk (s)	11.0
Pedestrian Calls (\#/hr)	0
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	
Turn Bay Length (ft)	

Splits and Phases: 17: Mt Carmel Rd \& Kellers Chapel Rd

Lane Group $\quad \varnothing 10$
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	7	4	\dagger	P		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		$\uparrow \uparrow$		\%	个4
Volume (vph)	14	21	2208	13	20	2679
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0	0		0	120	
Storage Lanes	1	0		0	1	
Taper Length (t)	25				25	
Satd. Flow (prot)	1576	0	3257	0	1662	3260
Flt Permitted	0.981				0.950	
Satd. Flow (perm)	1576	0	3257	0	1662	3260
Link Speed (mph)	30		50			50
Link Distance (ft)	142		288			335
Travel Time (s)	3.2		3.9			4.6
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	0\%	2\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	38	0	2414	0	22	2912
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type:	her					
Control Type: Unsignalized						
Intersection Capacity Utilization 90.4\% Analysis Period (min) 15						

Projected AM - MIT-1

	7		\dagger			\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		中 ${ }_{\text {\% }}$		${ }^{7}$	种
Volume (vph)	8	12	2248	12	12	1337
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0	0		0	120	
Storage Lanes	1	0		0	1	
Taper Length (ft)	25				25	
Satd. Flow (prot)	1562	0	3257	0	1646	3260
Flt Permitted	0.980				0.950	
Satd. Flow (perm)	1562	0	3257	0	1646	3260
Link Speed (mph)	30		50			50
Link Distance (ft)	185		287			288
Travel Time (s)	4.2		3.9			3.9
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	1\%	1\%	2\%	1\%	1\%	2\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	22	0	2456	0	13	1453
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 77.9\%				ICU Level of Service D		
Analysis Period (min) 15						

	7					\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		中t		\%	个 \uparrow	
Volume (veh/h)	8	12	2248	12	12	1337	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	9	13	2443	13	13	1453	
Pedestrians							
Lane Width (ft)							
Walking Speed (tt/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			TWLTL			TWLTL	
Median storage veh)			2			2	
Upstream signal (ft)			921			492	
pX, platoon unblocked	0.46	0.41			0.41		
VC , conflicting volume	3203	1228			2457		
$\mathrm{vC1}$, stage 1 conf vol	2450						
vC2, stage 2 conf vol	753						
vCu, unblocked vol	2509	0			1689		
tC , single (s)	6.8	6.9			4.1		
$\mathrm{tC}, 2$ stage (s)	5.8						
tF (s)	3.5	3.3			2.2		
p0 queue free \%	84	97			92		
cM capacity (veh/h)	56	451			157		
Direction, Lane\#	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3	
Volume Total	22	1629	828	13	727	727	
Volume Left	9	0	0	13	0	0	
Volume Right	13	0	13	0	0	0	
cSH	118	1700	1700	157	1700	1700	
Volume to Capacity	0.18	0.96	0.49	0.08	0.43	0.43	
Queue Length 95th (ft)	16	0	0	7	0	0	
Control Delay (s)	42.4	0.0	0.0	30.0	0.0	0.0	
Lane LOS	E			D			
Approach Delay (s)	42.4	0.0		0.3			
Approach LOS	E						
Intersection Summary							
Average Delay			0.3				
Intersection Capacity Utilization			77.9\%	ICU Level of Service			D
Analysis Period (min)			15				

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	\$		${ }^{1}$	\$		${ }^{1}$	中 ${ }^{\text {F }}$		${ }^{7}$	个t ${ }^{\text {a }}$	
Volume (vph)	333	18	69	49	36	183	56	1739	45	82	1153	92
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Storage Length (ft)	100		0	80		0	200		0	200		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	1548	1505	0	1548	1428	0	1630	3247	0	1630	3224	0
Flt Permitted	0.950	0.972		0.950	0.999		0.114			0.058		
Satd. Flow (perm)	1548	1505	0	1548	1428	0	196	3247	0	100	3224	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		21			75			3			11	
Link Speed (mph)		30			30			50			50	
Link Distance (ft)		534			109			561			316	
Travel Time (s)		12.1			2.5			7.7			4.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (\%)	36\%			10\%								
Lane Group Flow (vph)	232	225	0	48	243	0	61	1939	0	89	1353	0
Turn Type	Split	NA		Split	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	$4!$	$4!$		$8!$	$8!$		5	2		1	6	
Permitted Phases							2			6		
Detector Phase	4	4		8	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		8.0	20.0		8.0	20.0	
Total Split (s)	40.0	40.0		40.0	40.0		11.0	72.0		8.0	69.0	
Total Split (\%)	33.3\%	33.3\%		33.3\%	33.3\%		9.2\%	60.0\%		6.7\%	57.5\%	
Maximum Green (s)	36.0	36.0		36.0	36.0		7.0	68.0		4.0	65.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag							Lead	Lead		Lag	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	C-Min		None	C-Min	
Walk Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0			11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0			0	
Act Effct Green (s)	27.7	27.7		27.7	27.7		76.3	76.3		75.0	75.0	
Actuated g/C Ratio	0.23	0.23		0.23	0.23		0.64	0.64		0.62	0.62	
v/c Ratio	0.65	0.62		0.13	0.63		0.29	0.94		0.79	0.67	
Control Delay	50.7	45.1		8.3	6.2		12.4	30.6		74.8	16.2	
Queue Delay	0.0	0.1		1.2	2.9		0.0	0.0		3.6	0.0	
Total Delay	50.7	45.3		9.5	9.1		12.4	30.6		78.4	16.2	
LOS	D	D		A	A		B	C		E	B	
Approach Delay		48.0			9.1			30.0			20.1	
Approach LOS		D			A			C			C	
Queue Length 50th (ft)	174	152		7	0		16	643		23	353	
Queue Length 95th (ft)	250	227		m7	m2		38	\#968		\#125	511	

P2032 Southern Hills 4/15/2020 Projected AM MIT-1
EJP

Lane Group	$\emptyset 9$	$\emptyset 10$	
Lane Configurations			
Volume (vph)			
Ideal Flow (vphpl)			
Storage Length (ft)			
Storage Lanes			
Taper Length (ft)			
Satd. Flow (prot)			
Flt Permitted			
Satd. Flow (perm)			
Right Turn on Red			
Satd. Flow (RTOR)			
Link Speed (mph)			
Link Distance (ft)			
Travel Time (s)			
Peak Hour Factor			
Shared Lane Traffic (\%)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	9	10	
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)	4.0	4.0	
Minimum Split (s)	20.0	20.0	
Total Split (s)	20.0	20.0	
Total Split (\%)	17\%	17\%	
Maximum Green (s)	16.0	16.0	
Yellow Time (s)	3.5	3.5	
All-Red Time (s)	0.5	0.5	
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	
Recall Mode	Min	None	
Walk Time (s)	5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	
Pedestrian Calls (\#/hr)	0	0	
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
P2032 Southern Hills 4/15	Proje	d AM	
EJP			Page 4

	4	\rightarrow	\geqslant	\checkmark	\leftarrow	4	4	\dagger	P	\downarrow	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Internal Link Dist (ft)		454			29			481			236	
Turn Bay Length (ft)	100			80			200			200		
Base Capacity (vph)	464	466		464	480		215	2065		113	2018	
Starvation Cap Reductn	0	0		300	143		0	0		0	0	
Spillback Cap Reductn	0	18		0	0		0	0		5	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.50	0.50		0.29	0.72		0.28	0.94		0.82	0.67	

Intersection Summary

Area Type: Other
Cycle Length: 120
Actuated Cycle Length: 120
Offset: 12 (10\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 130
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.09
Intersection Signal Delay: 27.1
Intersection Capacity Utilization 93.4\%
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
! Phase conflict between lane groups.
Splits and Phases: 3: Southwest Dr (Hwy 49) \& Kellers Chapel Rd

Lane Group $\quad ø 9 \quad \varnothing 10$
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	\checkmark	4	\uparrow	7		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		中t		${ }^{7}$	个4
Volume (vph)	8	12	2238	16	12	1319
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (tt)	0	0		0	200	
Storage Lanes	1	0		0	1	
Taper Length (ft)	25				25	
Satd. Flow (prot)	1562	0	3257	0	1646	3260
Flt Permitted	0.980				0.950	
Satd. Flow (perm)	1562	0	3257	0	1646	3260
Link Speed (mph)	30		50			50
Link Distance (ft)	208		316			318
Travel Time (s)	4.7		4.3			4.3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles $(\%)$ 1% 1% 2% 1% 1% 2% Shared Lane Traffic (\%)						
Lane Group Flow (vph)	22	0	2450	0	13	1434
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 77.7\%				ICU Level of Service D		
Analysis Period (min) 15						

		pa	W			4
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations			\%	个4	\%	
Volume (vph)	2247	12	12	1341	8	12
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)		0	120		0	0
Storage Lanes		0	1		1	0
Taper Length (ft)			25		25	
Satd. Flow (prot)	3257	0	1646	3260	1562	0
Flt Permitted			0.950		0.980	
Satd. Flow (perm)	3257	0	1646	3260	1562	0
Link Speed (mph)	50			50	30	
Link Distance (f)	288			204	182	
Travel Time (s)	3.9			2.8	4.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	1\%	1\%	2\%	1\%	1\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	2455	0	13	1458	22	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 77.9\% ICU Level of Service D						
Analysis Period (min) 15						

13: Southwest Dr \& Collector E

		[4	1		4
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Queue Length 95th (ft)	\#1133		\#56	142	46	50
Internal Link Dist (ft)	124			216	144	
Turn Bay Length (ft)			200		100	
Base Capacity (vph)	2720		112	2901	425	247
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.90		0.54	0.49	0.15	0.27
Intersection Summary						
Area Type: Other						
Cycle Length: 120						
Actuated Cycle Length: 120						
Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBTL, Start of Green						
Natural Cycle: 120						
Control Type: Actuated-Coordinated						
Maximum v/c Ratio: 0.90						
Intersection Signal Delay: 7.1				Intersection LOS: A		
Intersection Capacity Utilization 78.8\%				ICU Level of Service		
Analysis Period (min) 15						
\# 95th percentile volume exceeds capacity, queue may be longer.						
Queue shown is maximum after two cycles.						

	\rightarrow				4	\%						
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	$\emptyset 1$	$\emptyset 2$	$\emptyset 4$	$\varnothing 5$	$ø 6$	$\emptyset 8$
Lane Configurations	\uparrow			\uparrow	\%							
Volume (vph)	51	94	12	60	206	14						
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750						
Satd. Flow (prot)	1580	0	0	1719	1641	0						
Flt Permitted				0.958	0.955							
Satd. Flow (perm)	1580	0	0	1660	1641	0						
Right Turn on Red		Yes				Yes						
Satd. Flow (RTOR)	102				2							
Link Speed (mph)	30			30	30							
Link Distance (ft)	109			779	182							
Travel Time (s)	2.5			17.7	4.1							
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92						
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%						
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	157	0	0	78	239	0						
Turn Type	NA		Perm	NA	NA							
Protected Phases	610			610	9		1	2	4	5	6	8
Permitted Phases			610									
Detector Phase	610		610	610	9							
Switch Phase												
Minimum Initial (s)					4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)					20.0		8.0	20.0	20.0	8.0	20.0	20.0
Total Split (s)					20.0		8.0	72.0	40.0	11.0	69.0	40.0
Total Split (\%)					16.7\%		7\%	60\%	33\%	9\%	58\%	33\%
Maximum Green (s)					16.0		4.0	68.0	36.0	7.0	65.0	36.0
Yellow Time (s)					3.5		3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)					0.5		0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)					0.0							
Total Lost Time (s)					4.0							
Lead/Lag					Lead		Lag	Lead		Lead	Lag	
Lead-Lag Optimize?					Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)					3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode					Min		None	C-Min	None	None	C-Min	None
Walk Time (s)					5.0			5.0	5.0		5.0	5.0
Flash Dont Walk (s)					11.0			11.0	11.0		11.0	11.0
Pedestrian Calls (\#/hr)					0			0	0		0	0
Act Effct Green (s)	83.5			83.5	16.0							
Actuated g/C Ratio	0.70			0.70	0.13							
v/c Ratio	0.14			0.07	1.09							
Control Delay	2.9			3.8	133.9							
Queue Delay	1.4			0.0	5.7							
Total Delay	4.3			3.8	139.6							
LOS	A			A	F							
Approach Delay	4.3			3.8	139.6							
Approach LOS	A			A	F							
Queue Length 50th (ft)	5			10	~ 207							
Queue Length 95th (ft)	m21			20	\#372							
Internal Link Dist (ft)	29			699	102							
Turn Bay Length (ft)												

Lane Group	$\varnothing 10$
Lane Configurations	
Volume (vph)	
Ideal Flow (vphpl)	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Peak Hour Factor	
Heavy Vehicles (\%)	
Shared Lane Traffic (\%)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	10
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	4.0
Minimum Split (s)	20.0
Total Split (s)	20.0
Total Split (\%)	17\%
Maximum Green (s)	16.0
Yellow Time (s)	3.5
All-Red Time (s)	0.5
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	Lag
Lead-Lag Optimize?	Yes
Vehicle Extension (s)	3.0
Recall Mode	None
Walk Time (s)	5.0
Flash Dont Walk (s)	11.0
Pedestrian Calls (\#/hr)	0
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	
Turn Bay Length (ft)	

P2032 Southern Hills 4/15/2020 Projected AM MIT-1

Splits and Phases: 17: Mt Carmel Rd \& Kellers Chapel Rd

Lane Group $\quad \varnothing 10$
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	7	4	\dagger	P		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		\uparrow 中		\%	个4
Volume (vph)	8	12	2266	8	12	1355
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0	0		0	120	
Storage Lanes	1	0		0	1	
Taper Length (t)	25				25	
Satd. Flow (prot)	1578	0	3257	0	1662	3260
Flt Permitted	0.980				0.950	
Satd. Flow (perm)	1578	0	3257	0	1662	3260
Link Speed (mph)	30		50			50
Link Distance (ft)	142		288			335
Travel Time (s)	3.2		3.9			4.6
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	0\%	2\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	22	0	2472	0	13	1473
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 78.3\%				ICU Level of Service D		
Analysis Period (min) 15						

	7	4	\dagger			\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		中 ${ }^{\text {F }}$		${ }^{7}$	性
Volume (vph)	14	21	1658	20	20	2038
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0	0		0	120	
Storage Lanes	1	0		0	1	
Taper Length (ft)	25				25	
Satd. Flow (prot)	1560	0	3254	0	1646	3260
Flt Permitted	0.981				0.950	
Satd. Flow (perm)	1560	0	3254	0	1646	3260
Link Speed (mph)	30		50			50
Link Distance (ft)	185		287			288
Travel Time (s)	4.2		3.9			3.9
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	1\%	1\%	2\%	1\%	1\%	2\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	38	0	1824	0	22	2215
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 71.2\%				ICU Level of Service C		
Analysis Period (min) 15						

	7					\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		中t		${ }^{*}$	个4	
Volume (veh/h)	14	21	1658	20	20	2038	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	15	23	1802	22	22	2215	
Pedestrians							
Lane Width (ft)							
Walking Speed (tt/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			TWLTL			TWLTL	
Median storage veh)			2			2	
Upstream signal (tt)			921			492	
pX, platoon unblocked	0.33	0.67			0.67		
VC , conflicting volume	2964	912			1824		
$\mathrm{vC1}$, stage 1 conf vol	1813						
vC2, stage 2 conf vol	1151						
vCu, unblocked vol	0	0			1242		
tC , single (s)	6.8	6.9			4.1		
$\mathrm{tC}, 2$ stage (s)	5.8						
tF (s)	3.5	3.3			2.2		
p0 queue free \%	95	97			94		
cM capacity (veh/h)	315	728			376		
Direction, Lane \#	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3	
Volume Total	38	1201	622	22	1108	1108	
Volume Left	15	0	0	22	0	0	
Volume Right	23	0	22	0	0	0	
cSH	477	1700	1700	376	1700	1700	
Volume to Capacity	0.08	0.71	0.37	0.06	0.65	0.65	
Queue Length 95th (ft)	6	0	0	5	0	0	
Control Delay (s)	13.2	0.0	0.0	15.2	0.0	0.0	
Lane LOS	B			C			
Approach Delay (s)	13.2	0.0		0.1			
Approach LOS B							
Intersection Summary							
Average Delay			0.2				
Intersection Capacity Utilization			71.2\%	ICU Level of Service			C
Analysis Period (min)			15				

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\$		${ }^{7}$	\$		${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{*}$	中 ${ }^{\text {a }}$	
Volume (vph)	213	44	3	40	38	146	25	1314	50	174	1541	329
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Storage Length (ft)	100		0	80		0	200		0	200		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	1548	1575	0	1548	1438	0	1630	3244	0	1630	3175	0
Flt Permitted	0.950	0.969		0.950	0.999		0.052			0.091		
Satd. Flow (perm)	1548	1575	0	1548	1438	0	89	3244	0	156	3175	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			122			4			35	
Link Speed (mph)		30			30			50			50	
Link Distance (ft)		534			109			561			316	
Travel Time (s)		12.1			2.5			7.7			4.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (\%)	39\%			10\%								
Lane Group Flow (vph)	142	141	0	39	204	0	27	1482	0	189	2033	0
Turn Type	Split	NA		Split	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	$4!$	$4!$		$8!$	8 !		5	2		1	6	
Permitted Phases							2			6		
Detector Phase	4	4		8	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		8.0	20.0		8.0	20.0	
Total Split (s)	40.0	40.0		40.0	40.0		8.0	80.0		20.0	92.0	
Total Split (\%)	28.6\%	28.6\%		28.6\%	28.6\%		5.7\%	57.1\%		14.3\%	65.7\%	
Maximum Green (s)	36.0	36.0		36.0	36.0		4.0	76.0		16.0	88.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	Min		None	Min	
Walk Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0			11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0			0	
Act Effct Green (s)	26.2	26.2		26.2	26.2		79.6	75.6		92.7	88.1	
Actuated g/C Ratio	0.21	0.21		0.21	0.21		0.63	0.60		0.73	0.69	
v/c Ratio	0.45	0.43		0.12	0.52		0.26	0.77		0.71	0.92	
Control Delay	49.9	49.1		27.8	11.7		12.9	23.0		32.8	25.2	
Queue Delay	0.0	0.1		0.7	1.3		0.0	0.0		5.2	0.0	
Total Delay	49.9	49.2		28.4	13.0		12.9	23.0		38.0	25.2	
LOS	D	D		C	B		B	C		D	C	
Approach Delay		49.5			15.5			22.8			26.3	
Approach LOS		D			B			C			C	
Queue Length 50th (ft)	111	110		13	0		5	461		62	725	
Queue Length 95th (ft)	185	181		m23	m0		14	590		148	\#1026	

P2032 Southern Hills 4/23/2020 Projected PM MIT-1
EJP

Lane Group	$\emptyset 9$	$\varnothing 10$	
Lane Configurations			
Volume (vph)			
Ideal Flow (vphpl)			
Storage Length (ft)			
Storage Lanes			
Taper Length (ft)			
Satd. Flow (prot)			
Flt Permitted			
Satd. Flow (perm)			
Right Turn on Red			
Satd. Flow (RTOR)			
Link Speed (mph)			
Link Distance (ft)			
Travel Time (s)			
Peak Hour Factor			
Shared Lane Traffic (\%)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	9	10	
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)	4.0	4.0	
Minimum Split (s)	20.0	20.0	
Total Split (s)	20.0	20.0	
Total Split (\%)	14\%	14\%	
Maximum Green (s)	16.0	16.0	
Yellow Time (s)	3.5	3.5	
All-Red Time (s)	0.5	0.5	
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lag	Lead	
Lead-Lag Optimize?	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	
Recall Mode	Min	None	
Walk Time (s)	5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	
Pedestrian Calls (\#/hr)	0	0	
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
P2032 Southern Hills 4/23/2020 Projected PM MIT-1			
EJP			Page 4

	\Rightarrow)	7	\leftarrow	4	4	\uparrow	7	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Internal Link Dist (ft)		454			29			481			236	
Turn Bay Length (ft)	100			80			200			200		
Base Capacity (vph)	439	447		439	495		104	1951		299	2212	
Starvation Cap Reductn	0	0		256	142		0	0		0	0	
Spillback Cap Reductn	0	40		0	0		0	0		62	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.32	0.35		0.21	0.58		0.26	0.76		0.80	0.92	

Intersection Summary

Area Type: Other
Cycle Length: 140
Actuated Cycle Length: 127
Natural Cycle: 140
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.92
Intersection Signal Delay: 26.0
Intersection LOS: C
Intersection Capacity Utilization 89.2\% ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
! Phase conflict between lane groups.

Lane Group $\quad ø 9 \quad \varnothing 10$
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	\checkmark	4	\uparrow	7		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		中t		${ }^{7}$	个4
Volume (vph)	14	21	1638	27	20	2018
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (tt)	0	0		0	200	
Storage Lanes	1	0		0	1	
Taper Length (ft)	25				25	
Satd. Flow (prot)	1560	0	3254	0	1646	3260
Flt Permitted	0.981				0.950	
Satd. Flow (perm)	1560	0	3254	0	1646	3260
Link Speed (mph)	30		50			50
Link Distance (ft)	208		316			318
Travel Time (s)	4.7		4.3			4.3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles $(\%)$ 1% 1% 2% 1% 1% 2% Shared Lane Traffic (\%)						
Lane Group Flow (vph)	38	0	1809	0	22	2193
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 70.6\%				ICU Level of Service C		
Analysis Period (min) 15						

		pa	\cdots			4
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	中t		${ }^{7}$	个个	M	
Volume（vph）	2165	20	20	2677	14	21
Ideal Flow（vphpl）	1750	1750	1750	1750	1750	1750
Storage Length（tt）		0	120		0	0
Storage Lanes		0	1		1	0
Taper Length（ft）			25		25	
Satd．Flow（prot）	3257	0	1646	3260	1560	0
Flt Permitted			0.950		0.981	
Satd．Flow（perm）	3257	0	1646	3260	1560	0
Link Speed（mph）	50			50	30	
Link Distance（ t ）	288			204	182	
Travel Time（s）	3.9			2.8	4.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	2\％	1\％	1\％	2\％	1\％	1\％
Shared Lane Traffic（\％）						
Lane Group Flow（vph）	2375	0	22	2910	38	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type：Other						
Control Type：Unsignalized						
Intersection Capacity Utilization 90．3\％ICU Level of Service E						
Analysis Period（min） 15						

13: Southwest Dr \& Collector E

						4
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	中 ${ }^{\text {a }}$		${ }^{1}$	44	17	「
Volume (vph)	2115	80	94	2605	106	113
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)		0	200		100	0
Storage Lanes		0	1		2	1
Taper Length (ft)			25		25	
Satd. Flow (prot)	3245	0	1646	3260	3193	1473
Flt Permitted			0.036		0.950	
Satd. Flow (perm)	3245	0	62	3260	3193	1473
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	8					75
Link Speed (mph)	50			50	30	
Link Distance (ft)	204			296	224	
Travel Time (s)	2.8			4.0	5.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	1\%	1\%	2\%	1\%	1\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	2386	0	102	2832	115	123
Turn Type	NA		pm+pt	NA	NA	Perm
Protected Phases	2		1	6	8	
Permitted Phases			6			8
Detector Phase	2		1	6	8	8
Switch Phase						
Minimum Initial (s)	4.0		4.0	4.0	4.0	4.0
Minimum Split (s)	20.0		8.0	20.0	20.0	20.0
Total Split (s)	110.0		10.0	120.0	20.0	20.0
Total Split (\%)	78.6\%		7.1\%	85.7\%	14.3\%	14.3\%
Maximum Green (s)	106.0		6.0	116.0	16.0	16.0
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	0.5		0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0		4.0	4.0	4.0	4.0
Lead/Lag	Lag		Lead			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	C-Max		None	C-Max	None	None
Walk Time (s)	5.0			5.0	5.0	5.0
Flash Dont Walk (s)	11.0			11.0	11.0	11.0
Pedestrian Calls (\#/hr)	0			0	0	0
Act Effct Green (s)	108.2		120.8	120.8	11.2	11.2
Actuated g/C Ratio	0.77		0.86	0.86	0.08	0.08
v/c Ratio	0.95		0.68	1.01	0.45	0.66
Control Delay	24.5		50.9	29.4	66.3	43.1
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	24.5		50.9	29.4	66.3	43.1
LOS	C		D	C	E	D
Approach Delay	24.5			30.2	54.3	
Approach LOS	C			C	D	
Queue Length 50th (ft)	913		42	~ 984	52	43

Splits and Phases: 13: Southwest Dr \& Collector E

		pa	\cdots			4
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	$\uparrow{ }^{\text {¢ }}$		${ }^{7}$	个4	M	
Volume (vph)	2194	20	20	2671	14	21
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (tt)		0	120		0	0
Storage Lanes		0	1		1	0
Taper Length (ft)			25		25	
Satd. Flow (prot)	3257	0	1646	3260	1560	0
Flt Permitted			0.950		0.981	
Satd. Flow (perm)	3257	0	1646	3260	1560	0
Link Speed (mph)	50			50	30	
Link Distance (t)	296			283	170	
Travel Time (s)	4.0			3.9	3.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	1\%	1\%	2\%	1\%	1\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	2407	0	22	2903	38	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 90.2\%Analysis Period (min) 15				ICU Level of Service E		

	\rightarrow				4	\%						
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	$\varnothing 1$	$\emptyset 2$	$\emptyset 4$	$ø 5$	$ø 6$	$\emptyset 8$
Lane Configurations	\uparrow			\uparrow	M							
Volume (vph)	95	172	21	77	146	22						
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750						
Satd. Flow (prot)	1582	0	0	1714	1630	0						
Flt Permitted				0.910	0.958							
Satd. Flow (perm)	1582	0	0	1577	1630	0						
Right Turn on Red		Yes				Yes						
Satd. Flow (RTOR)	187				4							
Link Speed (mph)	30			30	30							
Link Distance (ft)	109			779	182							
Travel Time (s)	2.5			17.7	4.1							
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92						
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%						
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	290	0	0	107	183	0						
Turn Type	NA		Perm	NA	NA							
Protected Phases	610			610	9		1	2	4	5	6	8
Permitted Phases			610									
Detector Phase	610		610	610	9							
Switch Phase												
Minimum Initial (s)					4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)					20.0		8.0	20.0	20.0	8.0	20.0	20.0
Total Split (s)					20.0		20.0	80.0	40.0	8.0	92.0	40.0
Total Split (\%)					14.3\%		14\%	57\%	29\%	6\%	66\%	29\%
Maximum Green (s)					16.0		16.0	76.0	36.0	4.0	88.0	36.0
Yellow Time (s)					3.5		3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)					0.5		0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)					0.0							
Total Lost Time (s)					4.0							
Lead/Lag					Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?					Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)					3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode					Min		None	Min	None	None	Min	None
Walk Time (s)					5.0			5.0	5.0		5.0	5.0
Flash Dont Walk (s)					11.0			11.0	11.0		11.0	11.0
Pedestrian Calls (\#/hr)					0			0	0		0	0
Act Effct Green (s)	98.3			98.3	16.0							
Actuated g/C Ratio	0.77			0.77	0.13							
v/c Ratio	0.23			0.09	0.88							
Control Delay	2.4			4.1	91.3							
Queue Delay	1.7			0.0	2.6							
Total Delay	4.2			4.1	93.9							
LOS	A			A	F							
Approach Delay	4.2			4.1	93.9							
Approach LOS	A			A	F							
Queue Length 50th (ft)	3			21	151							
Queue Length 95th (ft)	m14			36	\#297							
Internal Link Dist (ft)	29			699	102							
Turn Bay Length (ft)												

Lane Group
Lane Configurations
Volume (vph)
Ideal Flow (vphpl)
Satd. Flow (prot)
Fit Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Peak Hour Factor
Heavy Vehicles (\%)
Shared Lane Traffic (\%)
Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases
Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (\%)
Maximum Green (s)
Yellow Time (s)
All-Red Time (s)
Lost Time Adjust (s)
Total Lost Time (s)

P2032 Southern Hills 4/23/2020 Projected PM MIT-1
EJP
Page 18

Splits and Phases: 17: Mt Carmel Rd \& Kellers Chapel Rd

Lane Group $\quad \varnothing 10$
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	t	4	\dagger	$>$		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		性		\%	个4
Volume (vph)	14	21	2208	13	20	2679
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (t)	0	0		0	120	
Storage Lanes	1	0		0	1	
Taper Length (ft)	25				25	
Satd. Flow (prot)	1576	0	3257	0	1662	3260
Flt Permitted	0.981				0.950	
Satd. Flow (perm)	1576	0	3257	0	1662	3260
Link Speed (mph)	30		50			50
Link Distance (ft)	142		288			335
Travel Time (s)	3.2		3.9			4.6
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	0\%	2\%
Shared Lane Trafic (\%)						
Lane Group Flow (vph)	38	0	2414	0	22	2912
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 90.4\%				ICU Level of Service E		
Analysis Period (min) 15						

CHAPTER 4C. TRAFFIC CONTROL SIGNAL NEEDS STUDIES

Section 4C. 01 Studies and Factors for Justifying Traffic Control Signals

Standard:

01 An engineering study of traffic conditions, pedestrian characteristics, and physical characteristics of the location shall be performed to determine whether installation of a traffic control signal is justified at a particular location.

The investigation of the need for a traffic control signal shall include an analysis of factors related to the existing operation and safety at the study location and the potential to improve these conditions, and the applicable factors contained in the following traffic signal warrants:

Warrant 1, Eight-Hour Vehicular Volume
Warrant 2, Four-Hour Vehicular Volume
Warrant 3, Peak Hour
Warrant 4, Pedestrian Volume
Warrant 5, School Crossing
Warrant 6, Coordinated Signal System
Warrant 7, Crash Experience
Warrant 8, Roadway Network
Warrant 9, Intersection Near a Grade Crossing
03 The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.
Support:
04 Sections 8C. 09 and 8C. 10 contain information regarding the use of traffic control signals instead of gates and/ or flashing-light signals at highway-rail grade crossings and highway-light rail transit grade crossings, respectively. Guidance:
05 A traffic control signal should not be installed unless one or more of the factors described in this Chapter are met.
$06 \quad$ A traffic control signal should not be installed unless an engineering study indicates that installing a traffic control signal will improve the overall safety and/or operation of the intersection.

A traffic control signal should not be installed if it will seriously disrupt progressive traffic flow.
The study should consider the effects of the right-turn vehicles from the minor-street approaches. Engineering judgment should be used to determine what, if any, portion of the right-turn traffic is subtracted from the minor-street traffic count when evaluating the count against the signal warrants listed in Paragraph 2.
$09 \quad$ Engineering judgment should also be used in applying various traffic signal warrants to cases where approaches consist of one lane plus one left-turn or right-turn lane. The site-specific traffic characteristics should dictate whether an approach is considered as one lane or two lanes. For example, for an approach with one lane for through and right-turning traffic plus a left-turn lane, if engineering judgment indicates that it should be considered a one-lane approach because the traffic using the left-turn lane is minor, the total traffic volume approaching the intersection should be applied against the signal warrants as a one-lane approach. The approach should be considered two lanes if approximately half of the traffic on the approach turns left and the left-turn lane is of sufficient length to accommodate all left-turn vehicles.
$10 \quad$ Similar engineering judgment and rationale should be applied to a street approach with one through/left-turn lane plus a right-turn lane. In this case, the degree of conflict of minor-street right-turn traffic with traffic on the major street should be considered. Thus, right-turn traffic should not be included in the minor-street volume if the movement enters the major street with minimal conflict. The approach should be evaluated as a one-lane approach with only the traffic volume in the through/left-turn lane considered.
${ }_{11}$ At a location that is under development or construction and where it is not possible to obtain a traffic count that would represent future traffic conditions, hourly volumes should be estimated as part of an engineering study for comparison with traffic signal warrants. Except for locations where the engineering study uses the satisfaction of Warrant 8 to justify a signal, a traffic control signal installed under projected conditions should have an engineering study done within 1 year of putting the signal into stop-and-go operation to determine if the signal is justified. If not justified, the signal should be taken out of stop-and-go operation or removed.
12 For signal warrant analysis, a location with a wide median, even if the median width is greater than 30 feet, should be considered as one intersection.

Option:

13 At an intersection with a high volume of left-turn traffic from the major street, the signal warrant analysis may be performed in a manner that considers the higher of the major-street left-turn volumes as the "minor-street" volume and the corresponding single direction of opposing traffic on the major street as the "major-street" volume.

For signal warrants requiring conditions to be present for a certain number of hours in order to be satisfied, any four sequential 15 -minute periods may be considered as 1 hour if the separate 1 -hour periods used in the warrant analysis do not overlap each other and both the major-street volume and the minor-street volume are for the same specific one-hour periods.
15 For signal warrant analysis, bicyclists may be counted as either vehicles or pedestrians.
Support:
16 When performing a signal warrant analysis, bicyclists riding in the street with other vehicular traffic are usually counted as vehicles and bicyclists who are clearly using pedestrian facilities are usually counted as pedestrians. Option:
17 Engineering study data may include the following:
A. The number of vehicles entering the intersection in each hour from each approach during 12 hours of an average day. It is desirable that the hours selected contain the greatest percentage of the 24 -hour traffic volume.
B. Vehicular volumes for each traffic movement from each approach, classified by vehicle type (heavy trucks, passenger cars and light trucks, public-transit vehicles, and, in some locations, bicycles), during each 15-minute period of the 2 hours in the morning and 2 hours in the afternoon during which total traffic entering the intersection is greatest.
C. Pedestrian volume counts on each crosswalk during the same periods as the vehicular counts in Item B and during hours of highest pedestrian volume. Where young, elderly, and/or persons with physical or visual disabilities need special consideration, the pedestrians and their crossing times may be classified by general observation.
D. Information about nearby facilities and activity centers that serve the young, elderly, and/or persons with disabilities, including requests from persons with disabilities for accessible crossing improvements at the location under study. These persons might not be adequately reflected in the pedestrian volume count if the absence of a signal restrains their mobility.
E. The posted or statutory speed limit or the $85^{\text {th }}$-percentile speed on the uncontrolled approaches to the location.
F. A condition diagram showing details of the physical layout, including such features as intersection geometrics, channelization, grades, sight-distance restrictions, transit stops and routes, parking conditions, pavement markings, roadway lighting, driveways, nearby railroad crossings, distance to nearest traffic control signals, utility poles and fixtures, and adjacent land use.
G. A collision diagram showing crash experience by type, location, direction of movement, severity, weather, time of day, date, and day of week for at least 1 year.
18 The following data, which are desirable for a more precise understanding of the operation of the intersection, may be obtained during the periods described in Item B of Paragraph 17:
A. Vehicle-hours of stopped time delay determined separately for each approach.
B. The number and distribution of acceptable gaps in vehicular traffic on the major street for entrance from the minor street.
C. The posted or statutory speed limit or the $85^{\text {th }}$-percentile speed on controlled approaches at a point near to the intersection but unaffected by the control.
D. Pedestrian delay time for at least two 30-minute peak pedestrian delay periods of an average weekday or like periods of a Saturday or Sunday.
E. Queue length on stop-controlled approaches.

Section 4C. 02 Warrant 1, Eight-Hour Vehicular Volume

Support:
01 The Minimum Vehicular Volume, Condition A, is intended for application at locations where a large volume of intersecting traffic is the principal reason to consider installing a traffic control signal.
02 The Interruption of Continuous Traffic, Condition B, is intended for application at locations where Condition A is not satisfied and where the traffic volume on a major street is so heavy that traffic on a minor intersecting street suffers excessive delay or conflict in entering or crossing the major street.
03 It is intended that Warrant 1 be treated as a single warrant. If Condition A is satisfied, then Warrant 1 is satisfied and analyses of Condition B and the combination of Conditions A and B are not needed. Similarly, if Condition B is satisfied, then Warrant 1 is satisfied and an analysis of the combination of Conditions A and B is not needed.

Standard:

04
The need for a traffic control signal shall be considered if an engineering study finds that one of the following conditions exist for each of any $\mathbf{8}$ hours of an average day:
A. The vehicles per hour given in both of the 100 percent columns of Condition A in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection; or
B. The vehicles per hour given in both of the $\mathbf{1 0 0}$ percent columns of Condition B in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection. In applying each condition the major-street and minor-street volumes shall be for the same $\mathbf{8}$ hours. On the minor street, the higher volume shall not be required to be on the same approach during each of these $\mathbf{8}$ hours.
Option:
05
If the posted or statutory speed limit or the 85th-percentile speed on the major street exceeds 40 mph , or if the intersection lies within the built-up area of an isolated community having a population of less than 10,000 , the traffic volumes in the 70 percent columns in Table 4C-1 may be used in place of the 100 percent columns.

Guidance:

$06 \quad$ The combination of Conditions A and B is intended for application at locations where Condition A is not satisfied and Condition B is not satisfied and should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Standard:

07 The need for a traffic control signal shall be considered if an engineering study finds that both of the following conditions exist for each of any $\mathbf{8}$ hours of an average day:
A. The vehicles per hour given in both of the $\mathbf{8 0}$ percent columns of Condition A in Table $\mathbf{4 C} \mathbf{- 1}$ exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection; and
B. The vehicles per hour given in both of the 80 percent columns of Condition B in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection. These major-street and minor-street volumes shall be for the same $\mathbf{8}$ hours for each condition; however, the $\mathbf{8}$ hours satisfied in Condition A shall not be required to be the same $\mathbf{8}$ hours satisfied in Condition B. On the minor street, the higher volume shall not be required to be on the same approach during each of the $\mathbf{8}$ hours.

Table 4C-1. Warrant 1, Eight-Hour Vehicular Volume
Condition A-Minimum Vehicular Volume

| Number of lanes for moving
 traffic on each approach | | Vehicles per hour on major street
 (total of both approaches) | | | Vehicles per hour on higher-volume
 minor-street approach (one direction only) | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Major Street | Minor Street | $100 \%^{\mathrm{a}}$ | $80 \%^{\mathrm{b}}$ | $70 \%^{\mathrm{c}}$ | $56 \%^{\mathrm{d}}$ | $100 \%^{\mathrm{a}}$ | $80 \%^{\mathrm{b}}$ | $70 \%^{\mathrm{c}}$ | $56 \%^{\mathrm{d}}$ |
| 1 | 1 | 500 | 400 | 350 | 280 | 150 | 120 | 105 | 84 |
| 2 or more | 1 | 600 | 480 | 420 | 336 | 150 | 120 | 105 | 84 |
| 2 or more | 2 or more | 600 | 480 | 420 | 336 | 200 | 160 | 140 | 112 |
| 1 | 2 or more | 500 | 400 | 350 | 280 | 200 | 160 | 140 | 112 |

Condition B—Interruption of Continuous Traffic

| Number of lanes for moving
 traffic on each approach | | Vehicles per hour on major street
 (total of both approaches) | | | Vehicles per hour on higher-volume
 minor-street approach (one direction only) | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Major Street | Minor Street | $100 \%^{\text {a }}$ | $80 \%^{\mathrm{b}}$ | $70 \%^{\mathrm{c}}$ | $56 \%^{\mathrm{d}}$ | $100 \%^{\mathrm{a}}$ | $80 \%^{\mathrm{b}}$ | $70 \%^{\mathrm{c}}$ | $56 \%^{\mathrm{d}}$ |
| 1 | 1 | 750 | 600 | 525 | 420 | 75 | 60 | 53 | 42 |
| 2 or more | 1 | 900 | 720 | 630 | 504 | 75 | 60 | 53 | 42 |
| 2 or more | 2 or more | 900 | 720 | 630 | 504 | 100 | 80 | 70 | 56 |
| 1 | 2 or more | 750 | 600 | 525 | 420 | 100 | 80 | 70 | 56 |

${ }^{\text {a }}$ Basic minimum hourly volume
${ }^{b}$ Used for combination of Conditions A and B after adequate trial of other remedial measures
${ }^{c}$ May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000
${ }^{\text {d }}$ May be used for combination of Conditions A and B after adequate trial of other remedial measures when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

Option:
08 If the posted or statutory speed limit or the 85th-percentile speed on the major street exceeds 40 mph , or if the intersection lies within the built-up area of an isolated community having a population of less than 10,000 , the traffic volumes in the 56 percent columns in Table 4C-1 may be used in place of the 80 percent columns.

Section 4C. 03 Warrant 2, Four-Hour Vehicular Volume

Support:
01 The Four-Hour Vehicular Volume signal warrant conditions are intended to be applied where the volume of intersecting traffic is the principal reason to consider installing a traffic control signal.

Standard:

02 The need for a traffic control signal shall be considered if an engineering study finds that, for each of any 4 hours of an average day, the plotted points representing the vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach (one direction only) all fall above the applicable curve in Figure 4C-1 for the existing combination of approach lanes. On the minor street, the higher volume shall not be required to be on the same approach during each of these 4 hours.
Option:
03 If the posted or statutory speed limit or the 85th-percentile speed on the major street exceeds 40 mph , or if the intersection lies within the built-up area of an isolated community having a population of less than 10,000 , Figure 4C-2 may be used in place of Figure 4C-1.

Section 4C. 04 Warrant 3, Peak Hour

Support:

01 The Peak Hour signal warrant is intended for use at a location where traffic conditions are such that for a minimum of 1 hour of an average day, the minor-street traffic suffers undue delay when entering or crossing the major street.

Standard:

02 This signal warrant shall be applied only in unusual cases, such as office complexes, manufacturing plants, industrial complexes, or high-occupancy vehicle facilities that attract or discharge large numbers of vehicles over a short time.
03 The need for a traffic control signal shall be considered if an engineering study finds that the criteria in either of the following two categories are met:
A. If all three of the following conditions exist for the same 1 hour (any four consecutive $\mathbf{1 5}$-minute periods) of an average day:

1. The total stopped time delay experienced by the traffic on one minor-street approach (one direction only) controlled by a STOP sign equals or exceeds: 4 vehicle-hours for a one-lane approach or 5 vehicle-hours for a two-lane approach; and
2. The volume on the same minor-street approach (one direction only) equals or exceeds 100 vehicles per hour for one moving lane of traffic or 150 vehicles per hour for two moving lanes; and
3. The total entering volume serviced during the hour equals or exceeds 650 vehicles per hour for intersections with three approaches or $\mathbf{8 0 0}$ vehicles per hour for intersections with four or more approaches.
B. The plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach (one direction only) for 1 hour (any four consecutive 15-minute periods) of an average day falls above the applicable curve in Figure 4C-3 for the existing combination of approach lanes.
Option:
04 If the posted or statutory speed limit or the 85 th-percentile speed on the major street exceeds 40 mph , or if the intersection lies within the built-up area of an isolated community having a population of less than 10,000 , Figure 4C-4 may be used in place of Figure 4C-3 to evaluate the criteria in the second category of the Standard.
05 If this warrant is the only warrant met and a traffic control signal is justified by an engineering study, the traffic control signal may be operated in the flashing mode during the hours that the volume criteria of this warrant are not met.

Guidance:

06 If this warrant is the only warrant met and a traffic control signal is justified by an engineering study, the traffic control signal should be traffic-actuated.

Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-2. Warrant 2, Four-Hour Vehicular Volume (70\% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower
threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Section 4C. 05 Warrant 4, Pedestrian Volume

Support:

01
The Pedestrian Volume signal warrant is intended for application where the traffic volume on a major street is so heavy that pedestrians experience excessive delay in crossing the major street.
Standard:
02 The need for a traffic control signal at an intersection or midblock crossing shall be considered if an engineering study finds that one of the following criteria is met:
A. For each of any 4 hours of an average day, the plotted points representing the vehicles per hour on the major street (total of both approaches) and the corresponding pedestrians per hour crossing the major street (total of all crossings) all fall above the curve in Figure 4C-5; or
B. For 1 hour (any four consecutive 15 -minute periods) of an average day, the plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding pedestrians per hour crossing the major street (total of all crossings) falls above the curve in Figure 4C-7.
Option:
03 If the posted or statutory speed limit or the 85th-percentile speed on the major street exceeds 35 mph , or if the intersection lies within the built-up area of an isolated community having a population of less than 10,000 , Figure 4C-6 may be used in place of Figure 4C-5 to evaluate Criterion A in Paragraph 2, and Figure 4C-8 may be used in place of Figure 4C-7 to evaluate Criterion B in Paragraph 2.

Standard:

04 The Pedestrian Volume signal warrant shall not be applied at locations where the distance to the nearest traffic control signal or STOP sign controlling the street that pedestrians desire to cross is less than 300 feet, unless the proposed traffic control signal will not restrict the progressive movement of traffic.
05 If this warrant is met and a traffic control signal is justified by an engineering study, the traffic control signal shall be equipped with pedestrian signal heads complying with the provisions set forth in Chapter 4E. Guidance:
06 If this warrant is met and a traffic control signal is justified by an engineering study, then:
A. If it is installed at an intersection or major driveway location, the traffic control signal should also control the minor-street or driveway traffic, should be traffic-actuated, and should include pedestrian detection.
B. If it is installed at a non-intersection crossing, the traffic control signal should be installed at least 100 feet from side streets or driveways that are controlled by STOP or YIELD signs, and should be pedestrian-actuated. If the traffic control signal is installed at a non-intersection crossing, at least one of the signal faces should be over the traveled way for each approach, parking and other sight obstructions should be prohibited for at least 100 feet in advance of and at least 20 feet beyond the crosswalk or site accommodations should be made through curb extensions or other techniques to provide adequate sight distance, and the installation should include suitable standard signs and pavement markings.
C. Furthermore, if it is installed within a signal system, the traffic control signal should be coordinated.

Option:
07 The criterion for the pedestrian volume crossing the major street may be reduced as much as 50 percent if the 15th-percentile crossing speed of pedestrians is less than 3.5 feet per second.
08 A traffic control signal may not be needed at the study location if adjacent coordinated traffic control signals consistently provide gaps of adequate length for pedestrians to cross the street.

Section 4C. 06 Warrant 5, School Crossing

Support:
01 The School Crossing signal warrant is intended for application where the fact that schoolchildren cross the major street is the principal reason to consider installing a traffic control signal. For the purposes of this warrant, the word "schoolchildren" includes elementary through high school students.

Standard:

02 The need for a traffic control signal shall be considered when an engineering study of the frequency and adequacy of gaps in the vehicular traffic stream as related to the number and size of groups of schoolchildren at an established school crossing across the major street shows that the number of adequate gaps in the traffic stream during the period when the schoolchildren are using the crossing is less than the number of minutes in the same period (see Section 7A.03) and there are a minimum of 20 schoolchildren during the highest crossing hour.

Figure 4C-5. Warrant 4, Pedestrian Four-Hour Volume

*Note: 107 pph applies as the lower threshold volume.

Figure 4C-6. Warrant 4, Pedestrian Four-Hour Volume (70\% Factor)

*Note: 75 pph applies as the lower threshold volume.

Figure 4C-7. Warrant 4, Pedestrian Peak Hour

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)

*Note: 133 pph applies as the lower threshold volume.

Figure 4C-8. Warrant 4, Pedestrian Peak Hour (70\% Factor)

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)

*Note: 93 pph applies as the lower threshold volume.

Before a decision is made to install a traffic control signal, consideration shall be given to the implementation of other remedial measures, such as warning signs and flashers, school speed zones, school crossing guards, or a grade-separated crossing.
04 The School Crossing signal warrant shall not be applied at locations where the distance to the nearest traffic control signal along the major street is less than 300 feet, unless the proposed traffic control signal will not restrict the progressive movement of traffic.
Guidance:
05 If this warrant is met and a traffic control signal is justified by an engineering study, then:
A. If it is installed at an intersection or major driveway location, the traffic control signal should also control the minor-street or driveway traffic, should be traffic-actuated, and should include pedestrian detection.
B. If it is installed at a non-intersection crossing, the traffic control signal should be installed at least 100 feet from side streets or driveways that are controlled by STOP or YIELD signs, and should be pedestrian-actuated. If the traffic control signal is installed at a non-intersection crossing, at least one of the signal faces should be over the traveled way for each approach, parking and other sight obstructions should be prohibited for at least 100 feet in advance of and at least 20 feet beyond the crosswalk or site accommodations should be made through curb extensions or other techniques to provide adequate sight distance, and the installation should include suitable standard signs and pavement markings.
C. Furthermore, if it is installed within a signal system, the traffic control signal should be coordinated.

Section 4C. 07 Warrant 6, Coordinated Signal System

Support:
01 Progressive movement in a coordinated signal system sometimes necessitates installing traffic control signals at intersections where they would not otherwise be needed in order to maintain proper platooning of vehicles.
Standard:
02 The need for a traffic control signal shall be considered if an engineering study finds that one of the following criteria is met:
A. On a one-way street or a street that has traffic predominantly in one direction, the adjacent traffic control signals are so far apart that they do not provide the necessary degree of vehicular platooning.
B. On a two-way street, adjacent traffic control signals do not provide the necessary degree of platooning and the proposed and adjacent traffic control signals will collectively provide a progressive operation.
Guidance:
03 The Coordinated Signal System signal warrant should not be applied where the resultant spacing of traffic control signals would be less than 1,000 feet.

Section 4C. 08 Warrant 7, Crash Experience

Support:
01 The Crash Experience signal warrant conditions are intended for application where the severity and frequency of crashes are the principal reasons to consider installing a traffic control signal.
Standard:
02 The need for a traffic control signal shall be considered if an engineering study finds that all of the following criteria are met:
A. Adequate trial of alternatives with satisfactory observance and enforcement has failed to reduce the crash frequency; and
B. Five or more reported crashes, of types susceptible to correction by a traffic control signal, have occurred within a 12 -month period, each crash involving personal injury or property damage apparently exceeding the applicable requirements for a reportable crash; and
C. For each of any 8 hours of an average day, the vehicles per hour (vph) given in both of the 80 percent columns of Condition A in Table 4C-1 (see Section 4C.02), or the yph in both of the 80 percent columns of Condition B in Table 4C-1 exists on the major-street and the higher-volume minor-street approach, respectively, to the intersection, or the volume of pedestrian traffic is not less than 80 percent of the requirements specified in the Pedestrian Volume warrant. These major-street and minor-street volumes shall be for the same 8 hours. On the minor street, the higher volume shall not be required to be on the same approach during each of the $\mathbf{8}$ hours.

Option:
If the posted or statutory speed limit or the 85th-percentile speed on the major street exceeds 40 mph , or if the intersection lies within the built-up area of an isolated community having a population of less than 10,000 , the traffic volumes in the 56 percent columns in Table 4C-1 may be used in place of the 80 percent columns.

Section 4C. 09 Warrant 8, Roadway Network

Support:
01 Installing a traffic control signal at some intersections might be justified to encourage concentration and organization of traffic flow on a roadway network.
Standard:
02 The need for a traffic control signal shall be considered if an engineering study finds that the common intersection of two or more major routes meets one or both of the following criteria:
A. The intersection has a total existing, or immediately projected, entering volume of at least $\mathbf{1 , 0 0 0}$ vehicles per hour during the peak hour of a typical weekday and has 5 -year projected traffic volumes, based on an engineering study, that meet one or more of Warrants 1, 2, and 3 during an average weekday; or
B. The intersection has a total existing or immediately projected entering volume of at least $\mathbf{1 , 0 0 0}$ vehicles per hour for each of any $\mathbf{5}$ hours of a non-normal business day (Saturday or Sunday).
A major route as used in this signal warrant shall have at least one of the following characteristics:
A. It is part of the street or highway system that serves as the principal roadway network for through traffic flow.
B. It includes rural or suburban highways outside, entering, or traversing a city.
C. It appears as a major route on an official plan, such as a major street plan in an urban area traffic and transportation study.

Section 4C. 10 Warrant 9, Intersection Near a Grade Crossing

Support:
01 The Intersection Near a Grade Crossing signal warrant is intended for use at a location where none of the conditions described in the other eight traffic signal warrants are met, but the proximity to the intersection of a grade crossing on an intersection approach controlled by a STOP or YIELD sign is the principal reason to consider installing a traffic control signal.

Guidance:

02 This signal warrant should be applied only after adequate consideration has been given to other alternatives or after a trial of an alternative has failed to alleviate the safety concerns associated with the grade crossing. Among the alternatives that should be considered or tried are:
A. Providing additional pavement that would enable vehicles to clear the track or that would provide space for an evasive maneuver, or
B. Reassigning the stop controls at the intersection to make the approach across the track a non-stopping approach.

Standard:

03 The need for a traffic control signal shall be considered if an engineering study finds that both of the following criteria are met:
A. A grade crossing exists on an approach controlled by a STOP or YIELD sign and the center of the track nearest to the intersection is within 140 feet of the stop line or yield line on the approach; and
B. During the highest traffic volume hour during which rail traffic uses the crossing, the plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the minor-street approach that crosses the track (one direction only, approaching the intersection) falls above the applicable curve in Figure 4C-9 or 4C-10 for the existing combination of approach lanes over the track and the distance D, which is the clear storage distance as defined in Section 1A.13.

Guidance:

The following considerations apply when plotting the traffic volume data on Figure 4C-9 or 4C-10:
A. Figure 4C-9 should be used if there is only one lane approaching the intersection at the track crossing location and Figure 4C-10 should be used if there are two or more lanes approaching the intersection at the track crossing location.

PETERS \& ASSOCIATES

ENGINEERS, INC.

- CIVIL \& TRAFFIC ENGINEERING

5507 Ranch Drive - Suite 209

[^0]: Directional Distribution:
 51% entering, 49% exiting
 Calculated Trip Ends:
 Average Rate: 224 (Total), 114 (Entry), 110 (Exit)

[^1]: Directional Distribution:
 48% entering, 52% exiting
 Calculated Trip Ends:
 Average Rate: 210 (Total), 101 (Entry), 109 (Exit)
 Fitted Curve: 349 (Total), 167 (Entry), 182 (Exit)

[^2]: Directional Distribution:
 63% entering, 37% exiting
 Calculated Trip Ends:
 Average Rate: 45 (Total), 28 (Entry), 17 (Exit)
 Fitted Curve: 48 (Total), 30 (Entry), 18 (Exit)

